The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t...The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety.展开更多
Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojia...Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojiao, a popular liquor with strong fragrant flavor, was used as the identified liquor brand (160 samples, negative, 52 vol alcoholicity). Liquors of 10 other brands with strong fragrant flavor were used as the interferential brands (200 samples, positive, 52 vol alcoholicity). The Kennard-Stone algorithm was used for the division of modeling samples to achieve uniformity and representativeness. Based on the MW-PLS-DA, a simplified optimal model set with 157 wavebands was further proposed. This set contained five types of wavebands corresponding to the NIR absorption bands of water, ethanol, and other micronutrients (i.e., acids, aldehydes, phenols, and aromatic compounds) in liquor for practical choice. Using five selected simple models with 4775 - 4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12066 - 10373 cm-1, the validation recognition rates were obtained as 99.3% or higher. Results show good prediction performance and low model complexity, and also provided a valuable reference for designing small dedicated instruments. The proposed method is a promising tool for large-scale inspection of liquor food safety.展开更多
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri...Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.展开更多
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe...The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.展开更多
Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depress...Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders.展开更多
Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classi...Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.展开更多
The optimal selection method of spectral region based on the grey correlation analysis was applied in the analysis of near-infrared(NIR) spectra. In order to compute "characteristic" spectral region, 160 samples o...The optimal selection method of spectral region based on the grey correlation analysis was applied in the analysis of near-infrared(NIR) spectra. In order to compute "characteristic" spectral region, 160 samples of tobacco were surveyed by NIR. Next, the whole spectral region was randomly divided into six regions, and the values of association coefficients and correlation orders of different regions were computed for total sugar, reducing sugar and nicotine. Moreover, two regions that owned the largest value of association coefficient were regarded as "characteristic" spectral region of a model. Finally, the quantitative analysis models of different components were established via the partial least squares method, and the common selection methods of spectral region were compared. The simulation results indicate that the models to choose the spectral region based on grey correlation analysis are more effective than the common selection methods of spectral region, the optimized time of algorithm is shorter, the prediction precision of the models is higher and generalization ability for quantitative analysis results is stronger. This research can provide the support for the quantitative analysis models of NIR spectra and new idea for commercial analysis software of NIR. So, it has a high application value in the analysis of NIR spectra.展开更多
OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three c...OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.展开更多
Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mod...Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.展开更多
The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary ...The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary application of convolution neural network in spectral analysis demonstrates excellent end-to-end prediction ability,but it is sensitive to the hyper-parameters of the network.The transformer is a deep-learning model based on self-attention mechanism that compares convolutional neural networks(CNNs)in predictive performance and has an easy-todesign model structure.Hence,a novel calibration model named SpectraTr,based on the transformer structure,is proposed and used for the qualitative analysis of drug spectrum.The experimental results of seven classes of drug and 18 classes of drug show that the proposed SpectraTr model can automatically extract features from a huge number of spectra,is not dependent on pre-processing algorithms,and is insensitive to model hyperparameters.When the ratio of the training set to test set is 8:2,the prediction accuracy of the SpectraTr model reaches 100%and 99.52%,respectively,which outperforms PLS DA,SVM,SAE,and CNN.The model is also tested on a public drug data set,and achieved classification accuracy of 96.97%without preprocessing algorithm,which is 34.85%,28.28%,5.05%,and 2.73%higher than PLS DA,SVM,SAE,and CNN,respectively.The research shows that the SpectraTr model performs exceptionally well in spectral analysis and is expected to be a novel deep calibration model after Autoencoder networks(AEs)and CNN.展开更多
As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alco...As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alcohol precipitation processes for saccharide removal using nearinfrared(NIR)spectroscopy.NIR spectra in the 4000–10,000-cm^(-1)wavelength range are acquired in situ using a transflectance probe.These directly acquired spectra allow characterization of the dynamic variation tendency of saccharides during alcohol precipitation.Calibration models based on partial least squares(PLS)regression have been developed for the three saccharide impurities,namely glucose,fructose,and sucrose.Model errors are estimated as the root-meansquare errors of cross-validation(RMSECVs)of internal validation and root-mean-square errors of prediction(RMSEPs)of external validation.The RMSECV values of glucose,fructose,and sucrose were 1.150,1.535,and 3.067 mg·mL^(-1),and the RMSEP values were 0.711,1.547,and 3.740 mg·mL^(-1),respectively.The correlation coeffcients(r)between the NIR predictive and the reference measurement values were all above 0.94.Furthermore,NIR predictions based on the constructed models improved our understanding of sugar removal and helped develop a control strategy for alcohol precipitation.The results demonstrate that,as an alternative process analytical technology(PAT)tool for monitoring batch alcohol precipitation processes,NIR spectroscopy is advantageous for both efficient determination of quality characteristics(fast,in situ,and requiring no toxic reagents)and process stability,and evaluating the repeatability.展开更多
Detection of fruit traits by using near-infrared(NIR)spectroscopy may encounter out-of-distribution samples that exceed the generalization ability of a constructed calibration model.Therefore,confidence analysis for a...Detection of fruit traits by using near-infrared(NIR)spectroscopy may encounter out-of-distribution samples that exceed the generalization ability of a constructed calibration model.Therefore,confidence analysis for a given prediction is required,but this cannot be done using common calibration models of NIR spectroscopy.To address this issue,this paper studied the Gaussian process regression(GPR)for fruit traits detection using NIR spectroscopy.The mean and variance of the GPR were used as the predicted value and confidence,respectively.To show this,a real NIR data set related to dry matter content measurements in mango was used.Compared to partial least squares regression(PLSR),GPR showed approximately 14%lower root mean squared error(RMSE)for the in-distribution test set.Compared with no confidence analysis,using the variance of GPR to remove abnormal samples made GPR and PLSR showed approximately 58%and 10%lower RMSE on the mixed distribution test set,respectively(when the type 1 error rate was set to 0.1).Compared with traditional one-class classification methods,the variance of the GPR can be used to effectively eliminate poorly predicted samples.展开更多
Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the ...Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.展开更多
The present study theoretically explored the feasibility of the capillary method for measuring near-infrared (NIR) spectra of liquid or solution samples with microlitre volume, which was proposed in our previous studi...The present study theoretically explored the feasibility of the capillary method for measuring near-infrared (NIR) spectra of liquid or solution samples with microlitre volume, which was proposed in our previous studies. Lambert-Beer absorb- ance rule was applied to establish a model for the integral absorbance of capillary, which was then implemented in numerical analyses of the effects of capillary on various spectral features and dynamic range of absorption measurement. The theoretical speculations indicated that the capillary method might be used in NIR spectroscopy, which was further supported by the empirical data collected from our experiments by comparison between capillary NIR spectra of several organic solvents and cuvette cell NIR spectra.展开更多
The problem of predicting continuous scalar outcomes from functional predictors has received high levels of interest in recent years in many fields,especially in the food industry.The k-nearest neighbor(k-NN)method of...The problem of predicting continuous scalar outcomes from functional predictors has received high levels of interest in recent years in many fields,especially in the food industry.The k-nearest neighbor(k-NN)method of Near-Infrared Reflectance(NIR)analysis is practical,relatively easy to implement,and becoming one of the most popular methods for conducting food quality based on NIR data.The k-NN is often named k nearest neighbor classifier when it is used for classifying categorical variables,while it is called k-nearest neighbor regression when it is applied for predicting noncategorical variables.The objective of this paper is to use the functional Near-Infrared Reflectance(NIR)spectroscopy approach to predict some chemical components with some modern statistical models based on the kernel and k-Nearest Neighbour procedures.In this paper,three NIR spectroscopy datasets are used as examples,namely Cookie dough,sugar,and tecator data.Specifically,we propose three models for this kind of data which are Functional Nonparametric Regression,Functional Robust Regression,and Functional Relative Error Regression,with both kernel and k-NN approaches to compare between them.The experimental result shows the higher efficiency of k-NN predictor over the kernel predictor.The predictive power of the k-NN method was compared with that of the kernel method,and several real data sets were used to determine the predictive power of both methods.展开更多
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c...Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.展开更多
文摘The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety.
文摘Partial least squares discriminant analysis (PLS-DA) with integrated moving-window (MW) waveband screening was applied to the discriminant analysis of liquor brands with near-infrared (NIR) spectroscopy. Luzhou Laojiao, a popular liquor with strong fragrant flavor, was used as the identified liquor brand (160 samples, negative, 52 vol alcoholicity). Liquors of 10 other brands with strong fragrant flavor were used as the interferential brands (200 samples, positive, 52 vol alcoholicity). The Kennard-Stone algorithm was used for the division of modeling samples to achieve uniformity and representativeness. Based on the MW-PLS-DA, a simplified optimal model set with 157 wavebands was further proposed. This set contained five types of wavebands corresponding to the NIR absorption bands of water, ethanol, and other micronutrients (i.e., acids, aldehydes, phenols, and aromatic compounds) in liquor for practical choice. Using five selected simple models with 4775 - 4239, 7804 - 6569, 6264 - 5844, 9435 - 7896, and 12066 - 10373 cm-1, the validation recognition rates were obtained as 99.3% or higher. Results show good prediction performance and low model complexity, and also provided a valuable reference for designing small dedicated instruments. The proposed method is a promising tool for large-scale inspection of liquor food safety.
文摘Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.
文摘The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.
文摘Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders.
文摘Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.
基金Supported by the Key Projects in the National Science&Technology Pillar Program,China(No.2007BAI38B03)the Development Program of the Science and Technology of Jilin Province,China(Nos.200705C07,20075020)the 11th Five-Year Key Project of Jilin Province Education Department,China(No.[2010]205)
文摘The optimal selection method of spectral region based on the grey correlation analysis was applied in the analysis of near-infrared(NIR) spectra. In order to compute "characteristic" spectral region, 160 samples of tobacco were surveyed by NIR. Next, the whole spectral region was randomly divided into six regions, and the values of association coefficients and correlation orders of different regions were computed for total sugar, reducing sugar and nicotine. Moreover, two regions that owned the largest value of association coefficient were regarded as "characteristic" spectral region of a model. Finally, the quantitative analysis models of different components were established via the partial least squares method, and the common selection methods of spectral region were compared. The simulation results indicate that the models to choose the spectral region based on grey correlation analysis are more effective than the common selection methods of spectral region, the optimized time of algorithm is shorter, the prediction precision of the models is higher and generalization ability for quantitative analysis results is stronger. This research can provide the support for the quantitative analysis models of NIR spectra and new idea for commercial analysis software of NIR. So, it has a high application value in the analysis of NIR spectra.
基金Jiangxi Provincial Administration of Traditional Chinese Medicine Key Research Laboratory on the Fundamentals of Chinese Medicine Evidence(Gan TCM Science and Education Word[2022]No.8-4)Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program:Traditional Chinese Medicine Constitution-State Identification Health Management Research Team(No.CXTD22016)。
文摘OBJECTIVE:To evaluate the quality of Moyao(Myrrh)in the identification of the geographical origin and processing of the products.METHODS:Raw Moyao(Myrrh)and two kinds of Moyao(Myrrh)processed with vinegar from three countries were identified using near-infrared(NIR)spectroscopy combined with chemometric techniques.Principal component analysis(PCA)was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories.A classical chemometric algorithm(PLS-DA)and two machine learning algorithms[K-nearest neighbor(KNN)and support vector machine]were used to conduct a classification analysis of the near-infrared spectra of the Moyao(Myrrh)samples,and their discriminative performance was evaluated.RESULTS:Based on the accuracy,precision,recall rate,and F1 value in each model,the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results.In all of the chemometric analyses,the NIR spectrum of Moyao(Myrrh)preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins,and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best.The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively.CONCLUSIONS:NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao(Myrrh)and can also provide a reference for evaluations of its quality and the clinical use.
文摘Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method.
基金supported by the National Natural Science Foundation of China(61906050,21365008)Guangxi Technology R&D Program(2018AD11018)Innovation Project of GUET Graduate Education(2021YCXS050).
文摘The drug supervision methods based on near-infrared spectroscopy analysis are heavily dependent on the chemometrics model which characterizes the relationship between spectral data and drug categories.The preliminary application of convolution neural network in spectral analysis demonstrates excellent end-to-end prediction ability,but it is sensitive to the hyper-parameters of the network.The transformer is a deep-learning model based on self-attention mechanism that compares convolutional neural networks(CNNs)in predictive performance and has an easy-todesign model structure.Hence,a novel calibration model named SpectraTr,based on the transformer structure,is proposed and used for the qualitative analysis of drug spectrum.The experimental results of seven classes of drug and 18 classes of drug show that the proposed SpectraTr model can automatically extract features from a huge number of spectra,is not dependent on pre-processing algorithms,and is insensitive to model hyperparameters.When the ratio of the training set to test set is 8:2,the prediction accuracy of the SpectraTr model reaches 100%and 99.52%,respectively,which outperforms PLS DA,SVM,SAE,and CNN.The model is also tested on a public drug data set,and achieved classification accuracy of 96.97%without preprocessing algorithm,which is 34.85%,28.28%,5.05%,and 2.73%higher than PLS DA,SVM,SAE,and CNN,respectively.The research shows that the SpectraTr model performs exceptionally well in spectral analysis and is expected to be a novel deep calibration model after Autoencoder networks(AEs)and CNN.
基金the State Administration of Traditional Chinese Medicine of Zhejiang Province Project(No.2015ZQ022)the Zhejiang TCM Health Science and Technology Project(No.2015KYB110).
文摘As unsafe components in herbal medicine(HM),saccharides can affect not only the drug appearance and stabilization,but also the drug efficacy and safety.The present study focuses on the in-line monitoring of batch alcohol precipitation processes for saccharide removal using nearinfrared(NIR)spectroscopy.NIR spectra in the 4000–10,000-cm^(-1)wavelength range are acquired in situ using a transflectance probe.These directly acquired spectra allow characterization of the dynamic variation tendency of saccharides during alcohol precipitation.Calibration models based on partial least squares(PLS)regression have been developed for the three saccharide impurities,namely glucose,fructose,and sucrose.Model errors are estimated as the root-meansquare errors of cross-validation(RMSECVs)of internal validation and root-mean-square errors of prediction(RMSEPs)of external validation.The RMSECV values of glucose,fructose,and sucrose were 1.150,1.535,and 3.067 mg·mL^(-1),and the RMSEP values were 0.711,1.547,and 3.740 mg·mL^(-1),respectively.The correlation coeffcients(r)between the NIR predictive and the reference measurement values were all above 0.94.Furthermore,NIR predictions based on the constructed models improved our understanding of sugar removal and helped develop a control strategy for alcohol precipitation.The results demonstrate that,as an alternative process analytical technology(PAT)tool for monitoring batch alcohol precipitation processes,NIR spectroscopy is advantageous for both efficient determination of quality characteristics(fast,in situ,and requiring no toxic reagents)and process stability,and evaluating the repeatability.
基金the National Natural Science Foundation of China(62105245)the Zhejiang Natural Science Foundation of China(LQ20F030059,and LY21C200001)the Wenzhou Science and Technology Bureau General Project(S2020011),China.
文摘Detection of fruit traits by using near-infrared(NIR)spectroscopy may encounter out-of-distribution samples that exceed the generalization ability of a constructed calibration model.Therefore,confidence analysis for a given prediction is required,but this cannot be done using common calibration models of NIR spectroscopy.To address this issue,this paper studied the Gaussian process regression(GPR)for fruit traits detection using NIR spectroscopy.The mean and variance of the GPR were used as the predicted value and confidence,respectively.To show this,a real NIR data set related to dry matter content measurements in mango was used.Compared to partial least squares regression(PLSR),GPR showed approximately 14%lower root mean squared error(RMSE)for the in-distribution test set.Compared with no confidence analysis,using the variance of GPR to remove abnormal samples made GPR and PLSR showed approximately 58%and 10%lower RMSE on the mixed distribution test set,respectively(when the type 1 error rate was set to 0.1).Compared with traditional one-class classification methods,the variance of the GPR can be used to effectively eliminate poorly predicted samples.
文摘Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.
文摘The present study theoretically explored the feasibility of the capillary method for measuring near-infrared (NIR) spectra of liquid or solution samples with microlitre volume, which was proposed in our previous studies. Lambert-Beer absorb- ance rule was applied to establish a model for the integral absorbance of capillary, which was then implemented in numerical analyses of the effects of capillary on various spectral features and dynamic range of absorption measurement. The theoretical speculations indicated that the capillary method might be used in NIR spectroscopy, which was further supported by the empirical data collected from our experiments by comparison between capillary NIR spectra of several organic solvents and cuvette cell NIR spectra.
基金funding this work through the Research Groups Program under Grant Number R.G.P.1/189/41.I.M.A.and M.K.A.received the grant.
文摘The problem of predicting continuous scalar outcomes from functional predictors has received high levels of interest in recent years in many fields,especially in the food industry.The k-nearest neighbor(k-NN)method of Near-Infrared Reflectance(NIR)analysis is practical,relatively easy to implement,and becoming one of the most popular methods for conducting food quality based on NIR data.The k-NN is often named k nearest neighbor classifier when it is used for classifying categorical variables,while it is called k-nearest neighbor regression when it is applied for predicting noncategorical variables.The objective of this paper is to use the functional Near-Infrared Reflectance(NIR)spectroscopy approach to predict some chemical components with some modern statistical models based on the kernel and k-Nearest Neighbour procedures.In this paper,three NIR spectroscopy datasets are used as examples,namely Cookie dough,sugar,and tecator data.Specifically,we propose three models for this kind of data which are Functional Nonparametric Regression,Functional Robust Regression,and Functional Relative Error Regression,with both kernel and k-NN approaches to compare between them.The experimental result shows the higher efficiency of k-NN predictor over the kernel predictor.The predictive power of the k-NN method was compared with that of the kernel method,and several real data sets were used to determine the predictive power of both methods.
基金supported by the Medical Scientific Research Foundation of Guangdong Province,China(B2009043)
文摘Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.