A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure ...A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.展开更多
It is widely accepted that global warming, which results from the increase of carbon dioxide(CO2) in the atmosphere, has a negative impact on human beings. Forests are the largest terrestrial ecosystem and play an imp...It is widely accepted that global warming, which results from the increase of carbon dioxide(CO2) in the atmosphere, has a negative impact on human beings. Forests are the largest terrestrial ecosystem and play an important role in carbon sequestration. Many studies have documented that a mixed-species forest can sequester more carbon than single species forests, depending on the site conditions. Therefore, uneven-aged mixed-species forest management has been receiving more and more attention. In 2008, an experiment with five silvicultural models for Pinus massoniana(Chinese red pine) plantation, i.e., four transformation treatments(A1-A4) and one control treatment(A5) was conducted in the Experimental Center of Tropical Forestry of Chinese Academy of Forestry in Pingxiang City, in southwestern Guangxi Zhuang Autonomous Region, southern China. The four transformation treatments(A1-A4) enriched Castanopsis hystrix, Manglietia glance, Erythrophleum fordii and Quercus griffithii with differed richness and composition after thinning(removed 70% of trees), while no silvicultural treatment was used in the control treatment A5. In this study, we compared the carbon sequestration capacity of these five silvicultural models based on periodic annual increment and growth rate. Our results indicated that all the transformation treatments performed significantly better in carbon sequestration than the control treatment. A significant difference was also observed amongst the transformation treatments. Moreover, the transformation treatment A1 with enrichment species Castanopsis hystrix(350 trees·ha^-1) and Manglietia glance(350 trees·ha^-1) was determined to be the optimal model for maximum carbon sequestration because of its high tree-level growth rate and high economic value of enriched plantings, which could be popularized in other places. Our results further confirmed that management using mixed-species forests is a better approach to combat climate change than using monoculture forests.展开更多
This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cu...This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cumulative weeding operation time after six growing seasons was simulated using the developed model.The developed model included weed height,relative height of weeds to sugi,and initial planting density.The simulated cumulative weeding operation time decreased approximately 6%for each one-treatment decrease in weeding frequency.Under a three-treatment weeding frequency scenario,the simulated cumulative operation time when weeding was conducted during non-consecutive years was longer than that when weeding was conducted during three consecutive years.The results suggest that carrying out weeding treatment during consecutive years is the more effective for reduction of weeding costs.We conclude that weeding schedule as well as weeding frequency must be considered for reduction of weeding operation time.展开更多
基金the European Union for funding of the project "Management of mixed-species stands.Options for a low-risk forest management (REFORM)"(# 2816ERA02S)the Bavarian State Ministry for Nutrition,Agriculture,and Forestry for permanent support of the project W 07" Long-term experimental plots for forest growth and yield research "(# 7831-22209-2013)+1 种基金the German Science Foundation for providing the funds for the projects PR 292/12-1" Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech"the National Institute of Food and Agriculture/Pennsylvania Agriculture Experiment Station project PEN 04516 for its support
文摘A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.
基金the National Key R&D Program of China(2016YFD060020501).
文摘It is widely accepted that global warming, which results from the increase of carbon dioxide(CO2) in the atmosphere, has a negative impact on human beings. Forests are the largest terrestrial ecosystem and play an important role in carbon sequestration. Many studies have documented that a mixed-species forest can sequester more carbon than single species forests, depending on the site conditions. Therefore, uneven-aged mixed-species forest management has been receiving more and more attention. In 2008, an experiment with five silvicultural models for Pinus massoniana(Chinese red pine) plantation, i.e., four transformation treatments(A1-A4) and one control treatment(A5) was conducted in the Experimental Center of Tropical Forestry of Chinese Academy of Forestry in Pingxiang City, in southwestern Guangxi Zhuang Autonomous Region, southern China. The four transformation treatments(A1-A4) enriched Castanopsis hystrix, Manglietia glance, Erythrophleum fordii and Quercus griffithii with differed richness and composition after thinning(removed 70% of trees), while no silvicultural treatment was used in the control treatment A5. In this study, we compared the carbon sequestration capacity of these five silvicultural models based on periodic annual increment and growth rate. Our results indicated that all the transformation treatments performed significantly better in carbon sequestration than the control treatment. A significant difference was also observed amongst the transformation treatments. Moreover, the transformation treatment A1 with enrichment species Castanopsis hystrix(350 trees·ha^-1) and Manglietia glance(350 trees·ha^-1) was determined to be the optimal model for maximum carbon sequestration because of its high tree-level growth rate and high economic value of enriched plantings, which could be popularized in other places. Our results further confirmed that management using mixed-species forests is a better approach to combat climate change than using monoculture forests.
文摘This study quantified the effect of weeding frequency and weeding schedules on weeding operation time in a sugi(Cryptomeria japonica)plantation stand.A weeding operation time estimation model was developed;then the cumulative weeding operation time after six growing seasons was simulated using the developed model.The developed model included weed height,relative height of weeds to sugi,and initial planting density.The simulated cumulative weeding operation time decreased approximately 6%for each one-treatment decrease in weeding frequency.Under a three-treatment weeding frequency scenario,the simulated cumulative operation time when weeding was conducted during non-consecutive years was longer than that when weeding was conducted during three consecutive years.The results suggest that carrying out weeding treatment during consecutive years is the more effective for reduction of weeding costs.We conclude that weeding schedule as well as weeding frequency must be considered for reduction of weeding operation time.