With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concep...With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concepts and principles of ecological scenic forest and near-nature management,and combining with the present construction of ecological scenic forest in Shenzhen City,specifically stated the requirements,principles and implementation measures of different aspects involving in the construction of ecological scenic forest in Shenzhen,such as site classification,tree species selection,logging operation,community construction,tending management and benefit monitoring,and further expounded the application of near-nature management theories in this field.It was also stressed that the nature should be utilized and respected,artificial forest should be reformed into near-nature scenic forest with richer and more stable structure as well as higher protective eco-functions,so as to provide theoretical basis for the construction of ecological scenic forest and enhance its positive role in the urban construction of Shenzhen.展开更多
Background: China has a long tradition of managing planted forests. Different species of Populus, Eucalyptus, Larix, Cunninghamia and Pinus are planted to satisfy the local demand for wood products and provide ecologi...Background: China has a long tradition of managing planted forests. Different species of Populus, Eucalyptus, Larix, Cunninghamia and Pinus are planted to satisfy the local demand for wood products and provide ecological services at the same time. Evidence of the greater resilience of natural forests provides the motivation to develop asymmetric planting patterns, which is the focus of this study. We present a new method for designing plantation patterns that follow those observed in natural ecosystems and to maintain some regularity for operational convenience. Methods: Based on the uniform angle index, we analyzed the spatial structure of six natural forests in different regions of China. The uniform angle index describes the degree of spatial uniformity of the n nearest neighbors of a given reference tree. Accordingly, we identified all possible patterns of a neighborhood group within a regular planting pattern and developed a method to optimize planting point arrangements that contain some randomness as well as a minimum degree of regularity. Results:(1) There are 13 types of structural units in a regular planting, including seven random units, five even units and one cluster unit;(2) Five near-natural arrangements are presented with a minimum proportion of 50% of random units. These five arrangements represent a combination of regularity for operational convenience and asymmetry. Conclusions: The new planting patterns developed in this study are expected to increase the asymmetric competition and resilience of these important ecosystems. Some experimental plantings, based on our findings, have already been established, e.g., in Pinus tabulaeformis plantations in Tianshui, Gansu Province, and in a Populus deltoides plantation in Fangshan near Beijing.展开更多
The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingl...The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingly threatened by the formation of low-efficiency artificial shelter forests(LEASFs).In this study,LEASFs are systematically analyzed in terms of their status,formation mechanisms,and developmental obstacles.The key restoration techniques and schemes were summarized to improve the quality and efficiency of LEASFs.LEASFs are formed by relatively complex mechanisms,but they arise mainly due to poor habitat conditions,improper tree species selections,mismatch between stands and habitat,extensive forest management measures,and human interferences.The restoration and improvement of LEASFs are hindered by water deficits,mismatch between stands and habitat,single management purpose,and low efficiency.LEASFs are becoming more complex due to their wide range,the challenges associated with their restoration,and insufficient technological measures for their restoration.The key techniques of the quality and efficiency improvement of LEASFs include basic forest tending methods,near-natural restoration,multifunction-oriented improvement,and systematic restoration.An understanding on the formation mechanisms of LEASFs and a scientific approach toward their restoration are urgently needed and critical for the ecological protection and high-quality development of LEASFs on the CLP.Based on these analyses,we recommend strengthening the monitoring and supervision of LEASFs,considering the bearing capacity of regional water resources,implementing multiple restoration techniques,promoting multifunction-oriented ecological development,and exploring new management concepts to achieve the sustainable development of ASFs on the CLP.展开更多
基金Sponsored by International Scientific and Technological Cooperation Project of Ministry of Science and Technology(2007DFA31070)Specialized Fund of Basic S&T Expenses for Central Government Level Research Institutes of Public Interest(CAFYBB2008004)~~
文摘With the present unceasing development of science and society,ecological and social functions of forest have attracted more and more attention.This study with Shenzhen City as an example through elaborating the concepts and principles of ecological scenic forest and near-nature management,and combining with the present construction of ecological scenic forest in Shenzhen City,specifically stated the requirements,principles and implementation measures of different aspects involving in the construction of ecological scenic forest in Shenzhen,such as site classification,tree species selection,logging operation,community construction,tending management and benefit monitoring,and further expounded the application of near-nature management theories in this field.It was also stressed that the nature should be utilized and respected,artificial forest should be reformed into near-nature scenic forest with richer and more stable structure as well as higher protective eco-functions,so as to provide theoretical basis for the construction of ecological scenic forest and enhance its positive role in the urban construction of Shenzhen.
基金supported by the National Key Research and Development Program of China(2016YFD0600203)
文摘Background: China has a long tradition of managing planted forests. Different species of Populus, Eucalyptus, Larix, Cunninghamia and Pinus are planted to satisfy the local demand for wood products and provide ecological services at the same time. Evidence of the greater resilience of natural forests provides the motivation to develop asymmetric planting patterns, which is the focus of this study. We present a new method for designing plantation patterns that follow those observed in natural ecosystems and to maintain some regularity for operational convenience. Methods: Based on the uniform angle index, we analyzed the spatial structure of six natural forests in different regions of China. The uniform angle index describes the degree of spatial uniformity of the n nearest neighbors of a given reference tree. Accordingly, we identified all possible patterns of a neighborhood group within a regular planting pattern and developed a method to optimize planting point arrangements that contain some randomness as well as a minimum degree of regularity. Results:(1) There are 13 types of structural units in a regular planting, including seven random units, five even units and one cluster unit;(2) Five near-natural arrangements are presented with a minimum proportion of 50% of random units. These five arrangements represent a combination of regularity for operational convenience and asymmetry. Conclusions: The new planting patterns developed in this study are expected to increase the asymmetric competition and resilience of these important ecosystems. Some experimental plantings, based on our findings, have already been established, e.g., in Pinus tabulaeformis plantations in Tianshui, Gansu Province, and in a Populus deltoides plantation in Fangshan near Beijing.
基金supported by the Science and Technology Innovation Program of the Shaanxi Academy of Forestry (SXLK2022-02)the National Natural Science Foundation of China (42077452)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23070201).
文摘The construction of artificial shelter forests(ASFs)has resulted in substantial ecological,economic,and societal benefits to the Chinese Loess Plateau(CLP).However,the health and benefits of ASFs are being increasingly threatened by the formation of low-efficiency artificial shelter forests(LEASFs).In this study,LEASFs are systematically analyzed in terms of their status,formation mechanisms,and developmental obstacles.The key restoration techniques and schemes were summarized to improve the quality and efficiency of LEASFs.LEASFs are formed by relatively complex mechanisms,but they arise mainly due to poor habitat conditions,improper tree species selections,mismatch between stands and habitat,extensive forest management measures,and human interferences.The restoration and improvement of LEASFs are hindered by water deficits,mismatch between stands and habitat,single management purpose,and low efficiency.LEASFs are becoming more complex due to their wide range,the challenges associated with their restoration,and insufficient technological measures for their restoration.The key techniques of the quality and efficiency improvement of LEASFs include basic forest tending methods,near-natural restoration,multifunction-oriented improvement,and systematic restoration.An understanding on the formation mechanisms of LEASFs and a scientific approach toward their restoration are urgently needed and critical for the ecological protection and high-quality development of LEASFs on the CLP.Based on these analyses,we recommend strengthening the monitoring and supervision of LEASFs,considering the bearing capacity of regional water resources,implementing multiple restoration techniques,promoting multifunction-oriented ecological development,and exploring new management concepts to achieve the sustainable development of ASFs on the CLP.