Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in...Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.展开更多
In the fabrication of aero-engine blades,a great deal is gained when massive material removal is avoided at the end of the process,and as little as possible material is left on the blade billet.Due to the uncertainty ...In the fabrication of aero-engine blades,a great deal is gained when massive material removal is avoided at the end of the process,and as little as possible material is left on the blade billet.Due to the uncertainty of pre-process,the billet shapes are inconsistent.Sometimes,the near-net-shape billet doesn’t cover the blade design surface to be cut.Therefore,blade localization is necessary for these billets before the machining.In conventional localization methods,the design surface’s location focused on guaranteeing enough material to be cut.However,because the to-becut surface is in near-net and free-form shape,it is difficult to find a valid localized surface model to generate the tool path.Different from the localized surface is taken as rigid in previous investigation,it is allowed to deviate from the design surface no more than the tolerance band.In term of this principle,the tolerance band is utilized to promote localization ability.A series of optimization models with different priorities is established to avoid the abandonment expensive blade billet.Finally,with the experiments performed on the near-net-shape blades,the blade localization theory and the promotion of localization ability are verified.展开更多
The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211...The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211 or yttria phases by liquids containing barium cuprates and copper oxides followed by a controlled peritectic solidification. The process yields poly- and also single-crystalline superconducting objects with a shrinkage of less than half of one percent of the green bodies. The preservation of the initial structure of the green bodies results in fabrication of RE 123 in a wide variety of dimensions and complex shapes. The demonstrated products include bulk components like cylinders, single domain thick films on a variety of substrates, freestanding fabrics and open porous superconducting foams. This paper presents a comprehensive description of the infiltration processing technique and the resulting microstructures of the superconducting bodies. The advantages of this technique and practical applications of the processed superconducting structures are highlighted.展开更多
粉末近净成形(Powder metallurgy near net shaping,PM-NNS)技术能够制备出具有优异综合力学性能的粉末合金复杂部件。介绍了粉末热等静压(Hot isostatic pressing,HIP)近净成形技术原理及优势,综述了近年来国内外粉末近净成形在航天发...粉末近净成形(Powder metallurgy near net shaping,PM-NNS)技术能够制备出具有优异综合力学性能的粉末合金复杂部件。介绍了粉末热等静压(Hot isostatic pressing,HIP)近净成形技术原理及优势,综述了近年来国内外粉末近净成形在航天发动机领域的研究现状,从工艺路线和构件研制两方面展开,简述了构件制备过程的影响因素及缺陷控制,结合中国科学院金属研究所粉末近净成形技术在航天发动机领域的研究及应用情况,总结了粉末近净成形技术当前存在的主要问题及发展方向,以期进一步拓宽该技术的应用范围。展开更多
基金supported in part by Xi’an Aero-Engine(Group)Ltd.National Key Scientific Instrument and Equipment Development Project(2016YFF0101900)+1 种基金National Natural Science Foundation of China(Grant 51575310)Beijing Municipal Natural Science Foundation(Grant 3162014)。
文摘Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.
基金this work from the National Natural Science Foundations of China(No.51775445)the Fundamental Research Funds for the Central Universities of China(No.31020190503008)+1 种基金the Xi’an Science and Technology Project(No.201805042YD20CG26(9))The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM-349)are thankfully acknowledged。
文摘In the fabrication of aero-engine blades,a great deal is gained when massive material removal is avoided at the end of the process,and as little as possible material is left on the blade billet.Due to the uncertainty of pre-process,the billet shapes are inconsistent.Sometimes,the near-net-shape billet doesn’t cover the blade design surface to be cut.Therefore,blade localization is necessary for these billets before the machining.In conventional localization methods,the design surface’s location focused on guaranteeing enough material to be cut.However,because the to-becut surface is in near-net and free-form shape,it is difficult to find a valid localized surface model to generate the tool path.Different from the localized surface is taken as rigid in previous investigation,it is allowed to deviate from the design surface no more than the tolerance band.In term of this principle,the tolerance band is utilized to promote localization ability.A series of optimization models with different priorities is established to avoid the abandonment expensive blade billet.Finally,with the experiments performed on the near-net-shape blades,the blade localization theory and the promotion of localization ability are verified.
基金German Federal Ministry of Higher Education and Research(BMBF)(No.13N1571/l)
文摘The fabrication of near-net-shaped objects of RE123 superconductors by 'infiltration processing' is discussed. Near-net-shape processing involves the infiltration of preshaped porous green bodies of either 211 or yttria phases by liquids containing barium cuprates and copper oxides followed by a controlled peritectic solidification. The process yields poly- and also single-crystalline superconducting objects with a shrinkage of less than half of one percent of the green bodies. The preservation of the initial structure of the green bodies results in fabrication of RE 123 in a wide variety of dimensions and complex shapes. The demonstrated products include bulk components like cylinders, single domain thick films on a variety of substrates, freestanding fabrics and open porous superconducting foams. This paper presents a comprehensive description of the infiltration processing technique and the resulting microstructures of the superconducting bodies. The advantages of this technique and practical applications of the processed superconducting structures are highlighted.
文摘粉末近净成形(Powder metallurgy near net shaping,PM-NNS)技术能够制备出具有优异综合力学性能的粉末合金复杂部件。介绍了粉末热等静压(Hot isostatic pressing,HIP)近净成形技术原理及优势,综述了近年来国内外粉末近净成形在航天发动机领域的研究现状,从工艺路线和构件研制两方面展开,简述了构件制备过程的影响因素及缺陷控制,结合中国科学院金属研究所粉末近净成形技术在航天发动机领域的研究及应用情况,总结了粉末近净成形技术当前存在的主要问题及发展方向,以期进一步拓宽该技术的应用范围。