Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) +...Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.展开更多
The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dra...The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dramatic change,while stomatal density decreased with increasing CO 2 concentration.Under SEM,no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group.However,leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO 2 enriched environment.The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas.Furthermore,leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group.The results confirmed that CO 2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.展开更多
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect...Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.展开更多
Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and &...Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.展开更多
Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmen...Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.展开更多
An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Cala...An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.展开更多
A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0....A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.展开更多
The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil resp...The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.展开更多
The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring a...The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.展开更多
The regional air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Models-3 Community Multi-scale Air Quality) was developed by incorporating a vegetation photosynthesis and respiration module...The regional air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Models-3 Community Multi-scale Air Quality) was developed by incorporating a vegetation photosynthesis and respiration module(VPRM) and used to simulate temporal-spatial variations in atmospheric CO2 concentrations in East Asia,with prescribed surface CO2 fluxes(i.e.,fossil fuel emission,biomass burning,sea-air CO2 exchange,and terrestrial biosphere CO2 flux).Comparison of modeled CO2 mixing ratios with eight ground-based in-situ measurements demonstrated that the model was able to capture most observed CO2 temporal-spatial features.Simulated CO2 concentrations were generally in good agreement with observed concentrations.Results indicated that the accumulated impacts of anthropogenic emissions contributed more to increased CO2 concentrations in urban regions relative to remote locations.Moreover,RAMS-CMAQ analysis demonstrates that surface CO2 concentrations in East Asia are strongly influenced by terrestrial ecosystems.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distr...Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distribution characteristics of CO 2 concentration on the four levels of height(0 1 m, 0 6 m, 1 2 m and 2 m) and compare the differences of CO 2 concentration under different land covers. Results showed that daily average CO 2 concentration above wetland surface in Xianghai National Natural Reserve was lower than that above other wetlands in northeast China as well as the worldwide average, suggesting that Xianghai wetland absorbed CO 2 in August and acted as “sink” of CO 2 The horizontal variations on the four levels of height along the latitude were distinct, and had the changing tendency of “decreasing after increasing” with the increase of height. The areas with obvious variations were consistent on different levels of height, and those with the highest variations appeared above surface of shore, sloping field, Typha wetland and Phragmites wetland; the vertical variations were greatly different, with the higher variations in Phragmites wetland and Typha wetland, and the lands near the shore and the sloping field with the lower variations. Spatial variations of daily average CO 2 concentrations above wetland surface were affected by surface qualities and land covers.展开更多
Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3^-N, NH4^+-N, nitrate reductase activi...Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3^-N, NH4^+-N, nitrate reductase activity, total uptake N by wheat plants during solution cultural period and total N in plants were determined for comprehensive evaluation of the effect. Results showed that under both natural light and light-shaded conditions, addition of CO2 increased NO3^-N uptake and its assimilative capabilities by plants. However, there were some difference between shoots and roots. With increase of CO2 concentration, the concentration of NO3^-N and NH4^+-N as well as nitrate reductase activity were all decreased for shoots while the difference was not so distinct in roots, and the nitrate reductase activity was not decreased, but increased. Since NO3^-N uptake by plants from the solution and the total N in plants were much higher by CO2 addition, it may be concluded that addition of CO2 has resulted in rise of nitrate absorption, assimilation and metabolism of wheat.展开更多
There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. ps...There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. pseudoucuaica F. Schm) canopy at heights 0. 5, 1. 0 and 1. 5 m.CO2 concentration was measured sequentially every 3 bars by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely drily minimum and maximum CO2 concentration rangal from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0. 5 m) during the fruiting perioed and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering peried, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were -0. 18, 38. 15,24. 13, 10. 9 and 4. 91 μmol/mol respectively.展开更多
Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge...Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge) and Ejina (lower desert), respectively, in Heihe River Basin, northwest China. The results showed that, the half hourly CC at night was larger than in daytime, and the daily averaged CC was the largest in winter. The averaged CC of 932 d at the Linze was about 418 ppm, was about 366 ppm in the 762 d at the Ejina. In the same period from September 23 to November 9, 2004, the averaged CC was about 625,334, 436 and 353 ppm, at Yeniugou, Xishui, Linze and Ejina, respectively. The linear relationship between daily averaged CC and air temperature T was negative, between CC and relative humidity (RH) was positive. The linear CC-atmospheric pressure (A P) relationship was negative at the Linze and Yeniugou, was positive at the Ejina. The relationship between CC and global radiation R was exponent, and soil temperature Ts was negative linear, and soil water content was complex. The correlation between CC and wind speed was not existent. Using meteorological variables together to simulate CC, could give good results.展开更多
Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture wh...Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500μmnol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply.展开更多
Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co...Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co, concentration at 500±μLL' L-1 by directly injecting CO2 into the canopy under natural condition in 1998-1999. The results showed that the elevated Co, concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated Co, reduced the transpiration and enhances the water use efficiency (WUE) of plant.展开更多
Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos w...Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO_2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted. Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P<0.01). At the level of 5.7% CO_2, the developmental rate of blastocysts was 4.3%, and those of other experimental groups were 0. At the levels of 5.7% and 6.0% CO_2, embryos were blocked in the 2-cell or the 4-cell stage, and no significant difference was showed between the two groups (P>0.05). At the level of 15% CO_2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO_2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO_2 concentration.展开更多
In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas an...In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas analyzer. The average CO2 concentration was 370.23±0.59 and 367.45±1.91 ppm in June of 2006 and 2007, respectively. The values are much lower than those at sites with similar latitudes and altitudes worldwide. The observed atmospheric CO2 concentration in Rongbuk Valley can be affected by the transportation of prevailing down-valley winds from the up-valley direction to the observation site. Our results suggest that the Mt. Everest region could be ideal for background atmospheric and environmental studies.展开更多
The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii wer...The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.展开更多
文摘Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O(2) (70% O(2) + 0% CO(2)) or high CO(2) (5% O(2) + 10% CO(2)), in modified atmosphere package (MAP, (13% - 18%) O(2) + (2% -4%) CO(2)) and in air (control) at 1 degreesC to investigate the effects of different O(2) and CO(2) concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O(2) concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO(2) concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. 'Napoleon' fruits stored in 5% O(2) + 10% CO(2) for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O(2) + 0% CO(2) and air, re-spectively.
文摘The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dramatic change,while stomatal density decreased with increasing CO 2 concentration.Under SEM,no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group.However,leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO 2 enriched environment.The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas.Furthermore,leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group.The results confirmed that CO 2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.
文摘Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.
文摘Foliar concentrations of starch and major nutrients N, P, K, Ca, and Mg along with specific leaf weight (SLW) were determined in the potato (Solanun tuberosum L.) cvs "Denali", "Norland "'and "Russet Burbank" grown for 35 days under the CO2 concentrations of 500, 1 000, 1 500 and 2 000 mol mol-1 at both 16 and 20℃ air temperature. The starch concentration, pooled from the three cultivars, increased with increasing CO2 concentration at both 16 and 20℃,, and was consistently higher at 16℃ than at 20℃. The SLW (g m-2) was positively related to the foliar starch concentration on the basis of leaf area or dry weight. The concentrations of N, P, Ca, and Mg in leaves were negatively related to starch concentration under 14% starch on a dry weight basis. Above 14%, there was no significant relationship between nutrient and starch concentrations . The similar patterns were seen when the SLW and nutrient concentrations were expressed on a starch-free basis. In contrast, the leaf concentration of K was not closely related to the starch concentration. The results indicated that the changes in SLW and concentrations of N, P, Ca, and Mg in potato leaves only partially resulted from the changed starch concentration.
文摘Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.
基金supported by the Chinese Academy of Sciences (No KZCX2-YW-309)the National Basic Research Program (973) of China (No 2004CB418507)
文摘An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.
文摘A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-416)National NaturM Science Foundation of China (No.90411020)
文摘The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.
基金Project supported by the National Natural Science Foundation of China (No. 49771001).
文摘The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.
基金supported by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues (Grant No.XDA05040404)the National Natural Science Foundation of China (Grant No.41130528)
文摘The regional air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Models-3 Community Multi-scale Air Quality) was developed by incorporating a vegetation photosynthesis and respiration module(VPRM) and used to simulate temporal-spatial variations in atmospheric CO2 concentrations in East Asia,with prescribed surface CO2 fluxes(i.e.,fossil fuel emission,biomass burning,sea-air CO2 exchange,and terrestrial biosphere CO2 flux).Comparison of modeled CO2 mixing ratios with eight ground-based in-situ measurements demonstrated that the model was able to capture most observed CO2 temporal-spatial features.Simulated CO2 concentrations were generally in good agreement with observed concentrations.Results indicated that the accumulated impacts of anthropogenic emissions contributed more to increased CO2 concentrations in urban regions relative to remote locations.Moreover,RAMS-CMAQ analysis demonstrates that surface CO2 concentrations in East Asia are strongly influenced by terrestrial ecosystems.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Horizontal and vertical variations of daily average CO 2 concentration above the wetland surface were studied in Xianghai National Nature Reserve of China in August, 2000 The primary purpose was to study spatial distribution characteristics of CO 2 concentration on the four levels of height(0 1 m, 0 6 m, 1 2 m and 2 m) and compare the differences of CO 2 concentration under different land covers. Results showed that daily average CO 2 concentration above wetland surface in Xianghai National Natural Reserve was lower than that above other wetlands in northeast China as well as the worldwide average, suggesting that Xianghai wetland absorbed CO 2 in August and acted as “sink” of CO 2 The horizontal variations on the four levels of height along the latitude were distinct, and had the changing tendency of “decreasing after increasing” with the increase of height. The areas with obvious variations were consistent on different levels of height, and those with the highest variations appeared above surface of shore, sloping field, Typha wetland and Phragmites wetland; the vertical variations were greatly different, with the higher variations in Phragmites wetland and Typha wetland, and the lands near the shore and the sloping field with the lower variations. Spatial variations of daily average CO 2 concentrations above wetland surface were affected by surface qualities and land covers.
基金the projects(30230230 ,30070429)supported by the National Natural Science Foundation of China(NSFC) the project(G1999011707)supported by the National Key Basic Research Support Funds(NKBRSF)the NSFC and the NKBRSF for their kindness of supporting theseprojects.
文摘Hoagland's solution was used as water culture medium to study the effect of CO2 concentration on nitrate metabolism of wheat under natural light and light-shaded conditions. NO3^-N, NH4^+-N, nitrate reductase activity, total uptake N by wheat plants during solution cultural period and total N in plants were determined for comprehensive evaluation of the effect. Results showed that under both natural light and light-shaded conditions, addition of CO2 increased NO3^-N uptake and its assimilative capabilities by plants. However, there were some difference between shoots and roots. With increase of CO2 concentration, the concentration of NO3^-N and NH4^+-N as well as nitrate reductase activity were all decreased for shoots while the difference was not so distinct in roots, and the nitrate reductase activity was not decreased, but increased. Since NO3^-N uptake by plants from the solution and the total N in plants were much higher by CO2 addition, it may be concluded that addition of CO2 has resulted in rise of nitrate absorption, assimilation and metabolism of wheat.
文摘There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Cares lasiocarpa Ehrh. and C. pseudoucuaica F. Schm) canopy at heights 0. 5, 1. 0 and 1. 5 m.CO2 concentration was measured sequentially every 3 bars by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely drily minimum and maximum CO2 concentration rangal from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0. 5 m) during the fruiting perioed and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering peried, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were -0. 18, 38. 15,24. 13, 10. 9 and 4. 91 μmol/mol respectively.
文摘Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge) and Ejina (lower desert), respectively, in Heihe River Basin, northwest China. The results showed that, the half hourly CC at night was larger than in daytime, and the daily averaged CC was the largest in winter. The averaged CC of 932 d at the Linze was about 418 ppm, was about 366 ppm in the 762 d at the Ejina. In the same period from September 23 to November 9, 2004, the averaged CC was about 625,334, 436 and 353 ppm, at Yeniugou, Xishui, Linze and Ejina, respectively. The linear relationship between daily averaged CC and air temperature T was negative, between CC and relative humidity (RH) was positive. The linear CC-atmospheric pressure (A P) relationship was negative at the Linze and Yeniugou, was positive at the Ejina. The relationship between CC and global radiation R was exponent, and soil temperature Ts was negative linear, and soil water content was complex. The correlation between CC and wind speed was not existent. Using meteorological variables together to simulate CC, could give good results.
基金Project supported by the National Natural Science Foundation of China (Nos. 30170161 and 90102015) and the Doctoral Disciplines Programs Foundation of Ministry of Education of China (No. 20030335043)
文摘Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500μmnol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply.
文摘Pinus Syvestfiformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11 -year old ) was studied on response to elevated Co, concentration at 500±μLL' L-1 by directly injecting CO2 into the canopy under natural condition in 1998-1999. The results showed that the elevated Co, concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated Co, reduced the transpiration and enhances the water use efficiency (WUE) of plant.
基金This work was supported by the Natural Science Foundation of Guangdong Province,China
文摘Objective To investigate effects of different high CO_2 concentrations on the development of 2-cell mouse embryos in vitro Methods At levels of 5% CO_2 (control group), 5.7% CO_2, 6.0% CO_2 and 15% CO_2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO_2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted. Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P<0.01). At the level of 5.7% CO_2, the developmental rate of blastocysts was 4.3%, and those of other experimental groups were 0. At the levels of 5.7% and 6.0% CO_2, embryos were blocked in the 2-cell or the 4-cell stage, and no significant difference was showed between the two groups (P>0.05). At the level of 15% CO_2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO_2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO_2 concentration.
基金financed by the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-01)the National Basic Research Program of China(Grant No.2009CB421403)
文摘In the summers of 2006 and 2007, the atmospheric CO2 concentration and the wind speed in the Rongbuk Valley on the northern slope of Mr. Everest were measured by an ultrasonic anemometer with an Li-7500 CO2/H2O gas analyzer. The average CO2 concentration was 370.23±0.59 and 367.45±1.91 ppm in June of 2006 and 2007, respectively. The values are much lower than those at sites with similar latitudes and altitudes worldwide. The observed atmospheric CO2 concentration in Rongbuk Valley can be affected by the transportation of prevailing down-valley winds from the up-valley direction to the observation site. Our results suggest that the Mt. Everest region could be ideal for background atmospheric and environmental studies.
基金This paper is supported by National Natural Science Foundation of China (No. 39970608).
文摘The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.