In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
An innovative perforation method of interlaced fixed perforation was put forward based on the analysis of the characteristics of fractures in various periods of perforation and conventional perforation modes.By conduc...An innovative perforation method of interlaced fixed perforation was put forward based on the analysis of the characteristics of fractures in various periods of perforation and conventional perforation modes.By conducting a large-scale perforation shooting experiments,we investigated the morphology,propagation mechanism and propagation law of the near-wellbore fractures generated during perforating processes under different fixed angle and interlaced angle combinations,and discussed the control method of near-wellbore fractures in different types of unconventional oil and gas reservoirs.The experimental results show that:(1)The interlaced fixed perforation strengthens the connectivity between the perforation tunnels not only in the same fixed plane but also in adjacent fixed planes,making it likely to form near-wellbore connected fractures which propagate in order.(2)Three kinds of micro-fractures will come up around the perforation tunnel during perforation,namely typeⅠradial micro-fracture,typeⅡoblique micro-fracture and typeⅢdivergent micro-fracture at the perforation tip,which are interconnected into complex near-wellbore fracture system.(3)Different types of perforation bullets under different combinations of fixed angles and interlaced angles result in different shapes of near-wellbore fractures propagating in different patterns.(4)By using the interlaced perforation on fixed planes,arranging fixed planes according to the spiral mode or the continuous"zigzag"shape,the desired near-wellbore fractures can be obtained,which is conducive to the manual control of main fractures in the fracturing of unconventional or complex conventional reservoirs.展开更多
In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3P...In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.展开更多
A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale...A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale.For this purpose,an electrical resistivity measurement system was applied to the laboratory experiments using artificial cells with the shape of a single rock fracture.Sixty experiments were conducted using rock fractures according to the geometry,aperture sizes,wavelengths,and roughness amplitudes.The overall negative relationship between the normalized electrical resistivity values and the aperture sizes directly linked with the permeability,was well fitted by the power-law function with a large determination coefficient(≈0.86).The effects of wavelength and roughness amplitude of the rock fracture on the electrical resistivity were also analyzed.Results showed that the electrical resistivity was slightly increased with decreasing wavelength and increasing roughness amplitude.An empirical model for evaluating the permeability of a rock fracture was proposed based on the experimental data.In the field,if the electrical resistivity of pore groundwater could be measured in advance,this empirical model could be applied effectively for simple,quick monitoring of the fracture permeability.Although uncertainty may be associated with the permeability estimation due to the limited control parameters considered in this research,this electrical resistivity approach could be helpful to monitor the rock permeability in deep underground facilities such as those used for radioactive waste repositories or forms of energy storage.展开更多
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,...The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
This paper develops a model that only requires two sets of small-size rock specimens with the ratio of the structural geometry parameter maximum to minimum ae,max:ae,min≥3:1 to determine the rock fracture and strengt...This paper develops a model that only requires two sets of small-size rock specimens with the ratio of the structural geometry parameter maximum to minimum ae,max:ae,min≥3:1 to determine the rock fracture and strength parameters without size effect and predict the actual structural performance of rock.Regardless of three-point-bending,four-point-bending,or a combination of the above two specimen types,fracture toughness KICand tensile strength ftof rock were determined using only two sets of specimens with ae,max:ae,min≥3:1.The values KICand ftwere consistent with those determined using multiple sets of specimens.The full structural failure curve constructed by two sets of small-size specimens with ae,max:ae,min≥3:1 can accurately predict large-size specimens fracture failure,and±10%upper and lower limits of the curve can encompass the test results of large-size specimens.The peak load prediction curve was constructed by two sets of specimens with ae,max:ae,min≥3:1,and±15%upper and lower limits of the peak load prediction curve can cover the small-size specimen tests data.The model and method proposed in this paper require only two sets of small-size specimens,and their selection is unaffected by the specimen type,geometry,and initial crack length.展开更多
observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the p...observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.展开更多
Background: Few studies have investigated the differences in proximal femoral geometry and risk factors between patients with different types of hip fracture, especially in elderly Chinese. This study aimed to assess...Background: Few studies have investigated the differences in proximal femoral geometry and risk factors between patients with different types of hip fracture, especially in elderly Chinese. This study aimed to assess the differences in proximal femoral geometry parameters between patients with femoral neck fractures and patients with intertrochanteric fractures to provide guidance for individualized customized prosthesis and accurate reconstruction of proximal femurs in elderly Chinese patients. Methods: We retrospectively studied the electronic medical records of 198 elderly patients over 65 years of age who were admitted to the orthopedic department with hip fractures between January 2017 and December 2017 in The Third Hospital, Hebei Medical University. Age, fracture site, gender, and proximal femoral geometry parameters (.neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Student's t-test was used to compare the continuous variables, Chi-square test was used to analyze categorical variables, and multiple logistic stepwise regression analysis was used to evaluate the influencing factors of hip fracture type. Results: Statistically significant differences in NSA (137.63 ± 4.56° vs. 132.07 ± 4.17°, t = 1.598, P 〈 0.001), CEA (37.62 ± 6.77° vs. 43.11 ±7.09°, t = 5.597, P 〈 0.001 ), FND (35.21 ± 3.25 mm vs. 34.09 ±3.82 mm, t = 2.233, P = 0.027), and FNAL (99.30 ± 7.91 mm vs. 103.58± 8.39 ram, t = 3.715, P 〈 0.001 ) were found between the femoral neck fracture group and femoral intertrochanteric fracture group. FHD, FND, FSD, HAL, and FNAL were different between sexes (all P 〈 0.001 ). The greater NSA was the risk factor for femoral neck fractures (,odds ratio [OR]: 0.70, P 〈 0.001 ), greater CEA and longer FNAL were risk factors for femoral intertrochanteric fractures (OR: 1.15, 1.17, all P 〈 0.001), and greater FND was a protective factor for femoral intertrochanteric fractures (OR: 0.74, P 〈 0.001). Conclusions: We demonstrate differences in geometric morphological parameters of the proximal femur in different hip fracture types, as well as an effect of sex. These differences should he considered in the selection of prostheses for fracture internal fixation and hip replacements. These data could help guide the design of individualized customized prostheses and improve the accurate reconstruction of the proximal femur for elderly Chinese hip fracture patients.展开更多
In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method ...In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account.展开更多
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-003).
文摘An innovative perforation method of interlaced fixed perforation was put forward based on the analysis of the characteristics of fractures in various periods of perforation and conventional perforation modes.By conducting a large-scale perforation shooting experiments,we investigated the morphology,propagation mechanism and propagation law of the near-wellbore fractures generated during perforating processes under different fixed angle and interlaced angle combinations,and discussed the control method of near-wellbore fractures in different types of unconventional oil and gas reservoirs.The experimental results show that:(1)The interlaced fixed perforation strengthens the connectivity between the perforation tunnels not only in the same fixed plane but also in adjacent fixed planes,making it likely to form near-wellbore connected fractures which propagate in order.(2)Three kinds of micro-fractures will come up around the perforation tunnel during perforation,namely typeⅠradial micro-fracture,typeⅡoblique micro-fracture and typeⅢdivergent micro-fracture at the perforation tip,which are interconnected into complex near-wellbore fracture system.(3)Different types of perforation bullets under different combinations of fixed angles and interlaced angles result in different shapes of near-wellbore fractures propagating in different patterns.(4)By using the interlaced perforation on fixed planes,arranging fixed planes according to the spiral mode or the continuous"zigzag"shape,the desired near-wellbore fractures can be obtained,which is conducive to the manual control of main fractures in the fracturing of unconventional or complex conventional reservoirs.
文摘In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.
基金supported by the National Research Foundation of Korea(KRF)grant funded by the Korea government(MSIT)(No.NRF-2019R1G1A1100517)the Basic Research and Development Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM),which was funded by the Ministry of Science and ICT,Korea。
文摘A convenient approach was proposed by which to evaluate and monitor the permeability of a rock fracture by verifying the quantitative correlation between the electrical resistivity and permeability at laboratory scale.For this purpose,an electrical resistivity measurement system was applied to the laboratory experiments using artificial cells with the shape of a single rock fracture.Sixty experiments were conducted using rock fractures according to the geometry,aperture sizes,wavelengths,and roughness amplitudes.The overall negative relationship between the normalized electrical resistivity values and the aperture sizes directly linked with the permeability,was well fitted by the power-law function with a large determination coefficient(≈0.86).The effects of wavelength and roughness amplitude of the rock fracture on the electrical resistivity were also analyzed.Results showed that the electrical resistivity was slightly increased with decreasing wavelength and increasing roughness amplitude.An empirical model for evaluating the permeability of a rock fracture was proposed based on the experimental data.In the field,if the electrical resistivity of pore groundwater could be measured in advance,this empirical model could be applied effectively for simple,quick monitoring of the fracture permeability.Although uncertainty may be associated with the permeability estimation due to the limited control parameters considered in this research,this electrical resistivity approach could be helpful to monitor the rock permeability in deep underground facilities such as those used for radioactive waste repositories or forms of energy storage.
基金supported by the National Key Research and Development Program of China,under grant No.2018YFC1504903the Chongqing Natural Science Foundation,under grant No.cstc2020jcyj-msxm X0743 and cstc 2020jcyj-bsh0142+3 种基金the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,under grant No.Z019018China postdoctoral science foundation Grant No.2019M662918 and 2020M673152Regional Joint Fund for Basic and Applied Basic Research Fund of Guangdong Province,No.2019A1515110836the National Natural Science Foundation of China,under grant No.41688103。
文摘The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
基金supported by National Natural Science Foundation of China(No.52179132)Program for Science&Technology Innovation Talents in Universities of Henan province(No.20HASTIT013)Sichuan University,State Key Lab Hydraul&Mt River Engn(No.SKHL2007)。
文摘This paper develops a model that only requires two sets of small-size rock specimens with the ratio of the structural geometry parameter maximum to minimum ae,max:ae,min≥3:1 to determine the rock fracture and strength parameters without size effect and predict the actual structural performance of rock.Regardless of three-point-bending,four-point-bending,or a combination of the above two specimen types,fracture toughness KICand tensile strength ftof rock were determined using only two sets of specimens with ae,max:ae,min≥3:1.The values KICand ftwere consistent with those determined using multiple sets of specimens.The full structural failure curve constructed by two sets of small-size specimens with ae,max:ae,min≥3:1 can accurately predict large-size specimens fracture failure,and±10%upper and lower limits of the curve can encompass the test results of large-size specimens.The peak load prediction curve was constructed by two sets of specimens with ae,max:ae,min≥3:1,and±15%upper and lower limits of the peak load prediction curve can cover the small-size specimen tests data.The model and method proposed in this paper require only two sets of small-size specimens,and their selection is unaffected by the specimen type,geometry,and initial crack length.
文摘observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.
文摘Background: Few studies have investigated the differences in proximal femoral geometry and risk factors between patients with different types of hip fracture, especially in elderly Chinese. This study aimed to assess the differences in proximal femoral geometry parameters between patients with femoral neck fractures and patients with intertrochanteric fractures to provide guidance for individualized customized prosthesis and accurate reconstruction of proximal femurs in elderly Chinese patients. Methods: We retrospectively studied the electronic medical records of 198 elderly patients over 65 years of age who were admitted to the orthopedic department with hip fractures between January 2017 and December 2017 in The Third Hospital, Hebei Medical University. Age, fracture site, gender, and proximal femoral geometry parameters (.neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Student's t-test was used to compare the continuous variables, Chi-square test was used to analyze categorical variables, and multiple logistic stepwise regression analysis was used to evaluate the influencing factors of hip fracture type. Results: Statistically significant differences in NSA (137.63 ± 4.56° vs. 132.07 ± 4.17°, t = 1.598, P 〈 0.001), CEA (37.62 ± 6.77° vs. 43.11 ±7.09°, t = 5.597, P 〈 0.001 ), FND (35.21 ± 3.25 mm vs. 34.09 ±3.82 mm, t = 2.233, P = 0.027), and FNAL (99.30 ± 7.91 mm vs. 103.58± 8.39 ram, t = 3.715, P 〈 0.001 ) were found between the femoral neck fracture group and femoral intertrochanteric fracture group. FHD, FND, FSD, HAL, and FNAL were different between sexes (all P 〈 0.001 ). The greater NSA was the risk factor for femoral neck fractures (,odds ratio [OR]: 0.70, P 〈 0.001 ), greater CEA and longer FNAL were risk factors for femoral intertrochanteric fractures (OR: 1.15, 1.17, all P 〈 0.001), and greater FND was a protective factor for femoral intertrochanteric fractures (OR: 0.74, P 〈 0.001). Conclusions: We demonstrate differences in geometric morphological parameters of the proximal femur in different hip fracture types, as well as an effect of sex. These differences should he considered in the selection of prostheses for fracture internal fixation and hip replacements. These data could help guide the design of individualized customized prostheses and improve the accurate reconstruction of the proximal femur for elderly Chinese hip fracture patients.
基金supported by the National Natural Science Foundation of China(Grant Nos.5152540451504203&51374178)+2 种基金Open Fund(Grant No.PLN1515)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)a special fund from China’s central government for the development of local colleges and universities-the National First-level Discipline in the Oil and Gas Engineering Project(Grant No.20150727)Scientific Research Starting Project of Southwest Petroleum University(Grant No.2014QHZ004)
文摘In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account.