Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for ...Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for the study of strong limit theorems of Markov chains is extended to the case of Markov chain fields, The asymptotic equipartition properties with almost everywhere (a,e.) convergence for NSMC on Cayley trees are obtained,展开更多
The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain grad...The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.展开更多
Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient di...Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.展开更多
The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of...The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).展开更多
This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing...This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing conditions. A Berry-Esseen bound of frequency polygon is established and the convergence rates of asymptotic normality are derived. In particularly, for the optimal bin width , it is showed that the convergence rate of asymptotic normality reaches to ?when mixing coefficient tends to zero exponentially fast.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. Th...By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. The condition of plane strain is invoked. Two group of solutions have been obtained for the crack surface conditions: (1) traction free and (2) frictionless contact, respectively. It is found that along the interface ahead of crack tip the stress fields are co-order continuous while the displacement fields are cross-order continuous. The zone of dominance of the asymptotic solutions has been estimated.展开更多
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is ...The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.展开更多
A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-ti...A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-tip stress and strain are fully continuous,and the strain possesses In (A/r) singularity at the crack tip.The expressions of the stress,strain and velocity in each region are also given.展开更多
The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.T...The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.That they are essentially the isotropic,incompressible,power law type nonlinear elastic crack-tip fields is illustrated.After a concise review of the elasticity recov- ery correspondence principle for solving the nonlinear viscoelastic problems,the correspondence principle for solving the crack problems of power law type nonlinear viscoelastic materials under the first type boundary condition is proposed.The solution of the crack-tip stress,strain fields for the power law type nonlinear viscoelastic materials,especially for the modified polypropylene, is obtained.展开更多
In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing sma...In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing small damage. The formulation of the problem is simplified with an uncoupled approach. Based on experimental results of plastic damage, most of the damage in the material are con- sidered as small damage with the critacal damage variable ω_c<<1. Using this approach, closed form ex- pressions of the near tip damage fields for mode Ⅲ, mode I and the temperature distribution induced by plastic dissipation in a hardening material containing damage are deduced. We point out that the temperature distribution in the process zone is strongly dependent on the damage of materials even for the small damage case. The results of the predicted value of the temperature rise near the tip region ignoring the damage effect is appreciably higher than the observed data. The main reason of this discrepancy is the presence of damage dissipation and the fact that its influence on the calculation of plas- tic dissipation have not been appropriately taken account of. The calculation is improved by taking in- to account the damage effect on the temperature rise, then the T_(max) value is in better accord with the experimental value.展开更多
A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in ...A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.展开更多
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speed...The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.展开更多
In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arisi...In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.展开更多
基金Supported by National Basic Research Program of China(973 Program No.2007CBS14903)National Science Foundation of China(70671069)
文摘Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for the study of strong limit theorems of Markov chains is extended to the case of Markov chain fields, The asymptotic equipartition properties with almost everywhere (a,e.) convergence for NSMC on Cayley trees are obtained,
文摘The strain gradient effect becomes significant when the size of frac- ture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dom- inant strain field is irrotational. For mode Ⅰ plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist si- multaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode Ⅱ plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode Ⅱ plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode Ⅰ and mode Ⅱ, because the present theory is based only on the rotational gradi- ent of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
基金Projects(90305023 59731020) supported by the National Natural Science Foundation of China
文摘Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.
基金The present work is supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).
文摘This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing conditions. A Berry-Esseen bound of frequency polygon is established and the convergence rates of asymptotic normality are derived. In particularly, for the optimal bin width , it is showed that the convergence rate of asymptotic normality reaches to ?when mixing coefficient tends to zero exponentially fast.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
基金The project supported by the National Natural Science Foundation of China
文摘By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an in- terfacial crack between two different elastic-plastic materials. The condition of plane strain is invoked. Two group of solutions have been obtained for the crack surface conditions: (1) traction free and (2) frictionless contact, respectively. It is found that along the interface ahead of crack tip the stress fields are co-order continuous while the displacement fields are cross-order continuous. The zone of dominance of the asymptotic solutions has been estimated.
基金Project supported by the National Natural Science Foundation of China(Nos.91430106 and11771040)the Fundamental Research Funds for the Central Universities of China(No.06500073)
文摘The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.
基金The project supported by National Natural Science Foundation of China
文摘A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-Ⅰ quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media.The results show that the near-tip stress and strain are fully continuous,and the strain possesses In (A/r) singularity at the crack tip.The expressions of the stress,strain and velocity in each region are also given.
基金Project supported by the Hunan Natural Science Foundation(Nos.01JJY3001 and 01JJY2001)Research Item of the Hunan Education Committee(No.01C083)and the Key Item of Hunan Science and Technology Department.
文摘The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.That they are essentially the isotropic,incompressible,power law type nonlinear elastic crack-tip fields is illustrated.After a concise review of the elasticity recov- ery correspondence principle for solving the nonlinear viscoelastic problems,the correspondence principle for solving the crack problems of power law type nonlinear viscoelastic materials under the first type boundary condition is proposed.The solution of the crack-tip stress,strain fields for the power law type nonlinear viscoelastic materials,especially for the modified polypropylene, is obtained.
基金The project supported by the National Natural Science Foundation of China.
文摘In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing small damage. The formulation of the problem is simplified with an uncoupled approach. Based on experimental results of plastic damage, most of the damage in the material are con- sidered as small damage with the critacal damage variable ω_c<<1. Using this approach, closed form ex- pressions of the near tip damage fields for mode Ⅲ, mode I and the temperature distribution induced by plastic dissipation in a hardening material containing damage are deduced. We point out that the temperature distribution in the process zone is strongly dependent on the damage of materials even for the small damage case. The results of the predicted value of the temperature rise near the tip region ignoring the damage effect is appreciably higher than the observed data. The main reason of this discrepancy is the presence of damage dissipation and the fact that its influence on the calculation of plas- tic dissipation have not been appropriately taken account of. The calculation is improved by taking in- to account the damage effect on the temperature rise, then the T_(max) value is in better accord with the experimental value.
基金Project(20080431344) supported by Postdoctoral Science Foundation of ChinaProject(51021001) supported by the National Natural Science Foundation of China
文摘A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.
文摘The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.
基金supported by the National Natural Science Foundation of China (12201282)the Institute of Meteorological Big Data-Digital Fujian and the Fujian Key Laboratory of Data Science and Statistics (2020L0705)the Education Department of Fujian Province (JAT200325)。
文摘In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.