期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal Selection of Reference Set for the NearestNeighbor Classification by Tabu Search 被引量:1
1
作者 张鸿宾 孙广煜 《Journal of Computer Science & Technology》 SCIE EI CSCD 2001年第2期126-136,共11页
In this paper, a new approach is presented to find the reference set for the nearest neighbor classifier. The optimal reference set, which has minimum sample size and satisfies a certain error rate threshold, is obtai... In this paper, a new approach is presented to find the reference set for the nearest neighbor classifier. The optimal reference set, which has minimum sample size and satisfies a certain error rate threshold, is obtained through a Tabu search algorithm. When the error rate threshold is set to zero, the algorithm obtains a near minimal consistent subset of a given training set. While the threshold is set to a small appropriate value, the obtained reference set may compensate the bias of the nearest neighbor estimate. An aspiration criterion for Tabu search is introduced, which aims to prevent the search process from the inefficient wandering between the feasible and infeasible regions in the search space and speed up the convergence. Experimental results based on a number of typical data sets are presented and analyzed to illustrate the benefits of the proposed method. Compared to conventional methods, such as CNN and Dasarathy's algorithm, the size of the reduced reference sets is much smaller, and the nearest neighbor classification performance is better, especially when the error rate thresholds are set to appropriate nonzero values. The experimental results also illustrate that the MCS (minimal consistent set) of Dasarathy's algorithm is not minimal, and its candidate consistent set is not always ensured to reduce monotonically. A counter example is also given to confirm this claim. 展开更多
关键词 nearest neighbor classification tabu search reference set
原文传递
近邻法参考样本集的最优选择 被引量:8
2
作者 张鸿宾 孙广煜 《电子学报》 EI CAS CSCD 北大核心 2000年第11期16-21,共6页
为克服近邻分类法需要大量计算和存储的缺点 ,本文利用Tabu搜索来求解满足一定错误率条件的最小参考样本集 .当错误率阈值设为 0时 ,可以得到原训练集的一致子集 .当错误率阈值设为适当的非零值时 ,可以较好地克服近邻估计的偏置 .通过... 为克服近邻分类法需要大量计算和存储的缺点 ,本文利用Tabu搜索来求解满足一定错误率条件的最小参考样本集 .当错误率阈值设为 0时 ,可以得到原训练集的一致子集 .当错误率阈值设为适当的非零值时 ,可以较好地克服近邻估计的偏置 .通过在Tabu搜索中引入适当的激活 (aspiration)条件 ,避免了在可行和不可行解区间无意义的来回搜索 ,加快了收敛的速度 .实验结果表明 ,本文算法在压缩比和分类性能上都优于经典的算法 .本文还证明了Dasarathy的算法[6] 得到的最小一致子集 (MinimalConsistentSet:MCS)不是最小的 。 展开更多
关键词 近邻分类 tabu搜索 参考样本集 模式识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部