期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
1
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine nearest neighbor classifier Principal component analysis.
下载PDF
Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection
2
作者 Islam Zada Mohammed Naif Alatawi +4 位作者 Syed Muhammad Saqlain Abdullah Alshahrani Adel Alshamran Kanwal Imran Hessa Alfraihi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2917-2939,共23页
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malwar... Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention mechanisms.Supervised machine learning classifiers have emerged as promising tools for malware detection.However,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection.Addressing this gap can provide valuable insights for enhancing cybersecurity strategies.While numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware detection.Understanding the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security measures.This study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows systems.The objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows malware.Evaluating the accuracy,efficiency,and suitability of each classifier for real-world malware detection scenarios.Identifying the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and researchers.Offering recommendations for selecting the most effective classifier for Windows malware detection based on empirical evidence.The study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and evaluation.Exploratory data analysis involves understanding the dataset’s characteristics and identifying preprocessing requirements.Data preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for training.Model training utilizes various supervised classifiers,and their performance is evaluated using metrics such as accuracy,precision,recall,and F1 score.The study’s outcomes comprise a comparative analysis of supervised machine learning classifiers for Windows malware detection.Results reveal the effectiveness and efficiency of each classifier in detecting different types of malware.Additionally,insights into their strengths and limitations provide practical guidance for enhancing cybersecurity defenses.Overall,this research contributes to advancing malware detection techniques and bolstering the security posture of Windows systems against evolving cyber threats. 展开更多
关键词 Security and privacy challenges in the context of requirements engineering supervisedmachine learning malware detection windows systems comparative analysis Gaussian Naive Bayes K nearest neighbors Stochastic Gradient Descent classifier Decision Tree
下载PDF
A computer aided detection framework for mammographic images using fisher linear discriminant and nearest neighbor classifier
3
作者 Memuna Sarfraz Fadi Abu-Amara Ikhlas Abdel-Qader 《Journal of Biomedical Science and Engineering》 2012年第6期323-329,共7页
Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified... Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified as the inability of the radiologist to detect the abnormalities due to several reasons such as poor image quality, image noise, or eye fatigue. This paper presents a framework for a computer aided detection system that integrates Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD), and Nearest Neighbor Classifier (KNN) algorithms for the detection of abnormalities in mammograms. Using normal and abnormal mammograms from the MIAS database, the integrated algorithm achieved 93.06% classification accuracy. Also in this paper, we present an analysis of the integrated algorithm’s parameters and suggest selection criteria. 展开更多
关键词 Principal COMPONENT Analysis FISHER Linear DISCRIMINANT nearest neighbor classifier
下载PDF
A Logarithmic-Complexity Algorithm for Nearest Neighbor Classification Using Layered Range Trees
4
作者 Ibrahim Al-Bluwi Ashraf Elnagar 《Intelligent Information Management》 2012年第2期39-43,共5页
Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The pr... Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in , where k is a very small constant when compared with the dataset size n and d is the number of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 nearest neighbor classifier RANGE Trees Logarithmic Order
下载PDF
面向投票类AI分类器的零冗余存储器容错设计
5
作者 柳姗姗 金辉 +6 位作者 刘思佳 王天琦 周彬 马瑶 王碧 常亮 周军 《集成电路与嵌入式系统》 2024年第6期1-8,共8页
投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,... 投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,其存储电路需要进行容错设计。现有存储器容错技术通常采用错误纠正码,但面向AI系统,其引入的冗余会进一步加剧本就面临挑战的存储负担。因此本文提出一种零冗余存储器容错技术,采用纠正错误对分类结果的负面影响而非纠正错误本身的设计思想,利用错误造成的数据翻转现象恢复出正确的分类结果。通过对k邻近算法进行实验验证,本文提出的技术在不引入任何冗余的情况下可达到近乎完全的容错能力,且相比于现有技术,节省了大量硬件开销。 展开更多
关键词 存储器 软错误 人工智能 分类器 错误纠正码 k邻近算法
下载PDF
改进的邻近加权合成过采样技术
6
作者 邢胜 王晓兰 +3 位作者 沈家星 朱美玲 曹永青 何玉林 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第6期748-755,共8页
针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(i... 针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(improved proximity weighted synthetic oversampling technique,IProWSyn).改变权重的计算策略,引入底数为(0,1]的普通指数函数,通过动态改变底数令权重覆盖更大范围的搜索空间,进而找到更优的权重.将IProWSyn、ASN-SMOTE和ProWSyn应用在非平衡数据集ada、ecoli1、glass1、haberman、Pima和yeast1上,再使用k近邻(k-nearest neighbors,kNN)分类器和神经网络分类器检验方法的有效性.实验结果表明,在多数数据集上IProWSyn的F1、几何平均值(geometric mean,G-mean)和曲线下面积(area under curve,AUC)指标性能都高于其他过采样方法.IProWSyn过采样技术在这些数据集的综合分类效果更好,有更好的泛化表现. 展开更多
关键词 人工智能 非平衡数据 邻近加权合成过采样技术 过采样方法 K近邻分类器 神经网络
下载PDF
基于原型优化方法的分类器设计
7
作者 柳新强 徐欢 王栋 《微型电脑应用》 2024年第8期1-3,共3页
常规分类器如k近邻、支持向量机等已经被广泛使用,但在大数据时代背景下,较多的训练量会大幅度降低分类器的训练效率和准确率。为了解决该问题,利用原型优化方法对已有训练数据进行筛选压缩,滤除大量冗余数据,将压缩后的数据集作为原型... 常规分类器如k近邻、支持向量机等已经被广泛使用,但在大数据时代背景下,较多的训练量会大幅度降低分类器的训练效率和准确率。为了解决该问题,利用原型优化方法对已有训练数据进行筛选压缩,滤除大量冗余数据,将压缩后的数据集作为原型来训练分类器,提高训练效率和分类准确率。在已有方法基础上做出改进,设计新的基于原型优化方法的分类器,可以大幅度减小训练量,并保证分类准确率,测试结果验证了所提方法的有效性。 展开更多
关键词 原型优化 分类器 K近邻 支持向量机
下载PDF
基于逻辑回归的近邻分类耦合算法在医学骨科分类应用 被引量:1
8
作者 王宣谕 《现代信息科技》 2024年第11期158-162,共5页
随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归... 随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归耦合算法来进行医学方面的骨科分类,通过双算法准确度判断的耦合结果进行进一步判断,丰富算法的计算维度,进一步提高了分类准确率的精度。 展开更多
关键词 最近邻分类器 耦合算法 生物特征
下载PDF
基于传感器阵列的纹理图像表面缺陷识别算法 被引量:1
9
作者 滕碧红 孙海信 《计算机仿真》 北大核心 2023年第3期285-288,301,共5页
针对目前方法对纹理图像进行缺陷识别时,由于未能利用结构方差直方图对纹理图像进行全局的特征提取,导致图像在进行缺陷识别时的小波系数收敛特性差、覆盖性能低、识别效果差的问题,提出基于传感器阵列的纹理图像表面缺陷识别算法。该... 针对目前方法对纹理图像进行缺陷识别时,由于未能利用结构方差直方图对纹理图像进行全局的特征提取,导致图像在进行缺陷识别时的小波系数收敛特性差、覆盖性能低、识别效果差的问题,提出基于传感器阵列的纹理图像表面缺陷识别算法。该算法首先将传感器阵列与小波去噪算法相结合对纹理图像进行去噪处理;利用灰度分布法将图像中的像素进行区间划分,通过结构方差直方图对图像的全局特征进行提取;再采用卡方距离对纹理图像像素之间的距离进行计算,最后通过最近邻分类器对计算结果进行分类,从而实现对纹理图像的表面缺陷进行识别。实验结果表明,运用上述算法对缺陷进行识别时的小波系数收敛特性好、覆盖性能高、识别效果好。 展开更多
关键词 传感器阵列 纹理图像 缺陷识别 图像去噪 最近邻分类器
下载PDF
基于高分卫星影像的复杂山区光伏电站信息提取 被引量:3
10
作者 刘芸 宋善海 +2 位作者 李慧璇 田鹏举 王伟 《中低纬山地气象》 2023年第3期88-92,共5页
该文基于高分卫星资料,通过基于规则的面向对象分类、基于最邻近法的监督分类及基于CART分类器的监督分类3种不同分类方法,对复杂山区光伏电站进行提取,对比3种分类提取方法结果并完成精度验证。结果表明:合理的分割参数有利于提高光伏... 该文基于高分卫星资料,通过基于规则的面向对象分类、基于最邻近法的监督分类及基于CART分类器的监督分类3种不同分类方法,对复杂山区光伏电站进行提取,对比3种分类提取方法结果并完成精度验证。结果表明:合理的分割参数有利于提高光伏电站提取精度;基于规则的面向对象分类法光伏电站提取精度最佳,最邻近分类法次之,CART分类器分类法最差,可利用基于规则的面向对象分类法较为准确地进行复杂山区光伏电站信息提取,为光伏产业健康、合理发展提供一定的数据支撑。 展开更多
关键词 面向对象 最邻近分类法 CART分类器 光伏电站
下载PDF
Nearest-neighbor classifier motivated marginal discriminant projections for face recognition 被引量:4
11
作者 Pu HUANG Zhenmin TANG +1 位作者 Caikou CHEN Xintian CHENG 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第4期419-428,共10页
Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intri... Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intrinsic and penalty graphs. In this paper, we propose a novel method called nearest-neighbor (NN) classifier motivated marginal discriminant projections (NN-MDP). Motivated by the NN classifier, NN-MDP seeks a few projection vectors to prevent data samples from being wrongly categorized. Like MFA, NN-MDP can characterize the compactness and separability of samples simultaneously. Moreover, in contrast to MFA, NN-MDP can actively construct the intrinsic graph and penalty graph without unknown parameters. Experimental results on the 0RL, Yale, and FERET face databases show that NN-MDP not only avoids the intractability, and high expense of neighborhood parameter selection, but is also more applicable to face recognition with NN classifier than other methods. 展开更多
关键词 dimensionality reduction (DR) face recogni-tion marginal Fisher analysis (MFA) locality preservingprojections (LPP) graph construction margin-based nearest-neighbor (NN) classifier
原文传递
Theoretical analysis of the confidence metrics for nearestneighbor classifier
12
作者 Xiaofan Lin Xiaoqing Ding Youshou Wu 《Chinese Science Bulletin》 SCIE EI CAS 1998年第6期464-467,共4页
Confidence value plays a vital role in the decision of rejection threshold and the integration of multiple classifiers. Nearest neighbor (NN) classifier is the most traditional and most common nonparameter statistical... Confidence value plays a vital role in the decision of rejection threshold and the integration of multiple classifiers. Nearest neighbor (NN) classifier is the most traditional and most common nonparameter statistical pattern classifier. However, so far there is no explicate theoretical analysis of the connection between nearest distance and confidence value. An analytical insight into different approximations is presented and one formula is pointed out that it is optimal in the sense of mathematical expectation. Practice in handwritten numeral recognition strongly supports the conclusion. 展开更多
关键词 nearest neighbor classifier CONFIDENCE VALUE optimal REJECTION handwritten numeral recognition.
全文增补中
基于边际Fisher准则和迁移学习的小样本集分类器设计算法 被引量:12
13
作者 舒醒 于慧敏 +3 位作者 郑伟伟 谢奕 胡浩基 唐慧明 《自动化学报》 EI CSCD 北大核心 2016年第9期1313-1321,共9页
如何利用大量已有的同构标记数据(源域)设计小样本训练数据(目标域)的分类器是一个具有很强应用意义的研究问题.由于不同域的数据特征分布有差异,直接使用源域数据对目标域样本进行分类的效果并不理想.针对上述问题,本文提出了一种基于... 如何利用大量已有的同构标记数据(源域)设计小样本训练数据(目标域)的分类器是一个具有很强应用意义的研究问题.由于不同域的数据特征分布有差异,直接使用源域数据对目标域样本进行分类的效果并不理想.针对上述问题,本文提出了一种基于迁移学习的分类器设计算法.首先,本文利用内积度量的边际Fisher准则对源域进行特征映射,提高源域中类内紧凑性和类间区分性.其次,为了筛选合理的训练样本对,本文提出一种去除边界奇异点的算法来选择源域密集区域样本点,与目标域中的标记样本点组成训练样本对.在核化空间上,本文学习了目标域特征到源域特征的非线性转换,将目标域映射到源域.最后,利用邻近算法(k-nearest neighbor,k NN)分类器对映射后的目标域样本进行分类.本文不仅改进了边际Fisher准则方法,并且将基于自适应样本对筛选的迁移学习应用到小样本数据的分类器设计中,提高域间适应性.在通用数据集上的实验结果表明,本文提出的方法能够有效提高小样本训练域的分类器性能. 展开更多
关键词 小样本集分类器 迁移学习 边际Fisher准则 k NN分类器 域间转换
下载PDF
基于扩展k阶近邻法的电力系统稳定评估新算法 被引量:19
14
作者 王同文 管霖 +1 位作者 章小强 张尧 《电力系统自动化》 EI CSCD 北大核心 2008年第3期18-21,75,共5页
针对k阶近邻法分类时对样本的潜在结构信息未加利用这一缺陷,扩展k阶近邻法采用模式发现算法获取样本的空间分布知识,以获得的知识取代原始样本实现未知样本的分类。算法有效剔除了不利于分类的干扰样本,提高了分类精度和速度。在基于... 针对k阶近邻法分类时对样本的潜在结构信息未加利用这一缺陷,扩展k阶近邻法采用模式发现算法获取样本的空间分布知识,以获得的知识取代原始样本实现未知样本的分类。算法有效剔除了不利于分类的干扰样本,提高了分类精度和速度。在基于稳态运行信息的暂态稳定评估算法中,应用扩展k阶近邻法,实现了各种方式下稳定水平的正确判别。仿真结果验证了算法的有效性。算法作为一种通用的知识获取工具有广泛的应用前景。 展开更多
关键词 稳定评估 扩展k阶近邻法 模式发现 特征选择 知识获取
下载PDF
RBF神经网络的混合学习算法 被引量:15
15
作者 苏小红 侯秋香 +1 位作者 马培军 王亚东 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第9期1446-1449,共4页
针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向... 针对RBF神经网络的最近邻聚类学习算法存在的学习精度不理想和固定网络结构的梯度下降训练学习算法存在的中心不易确定、训练时间长等问题,提出一种基于最近邻聚类中心选取和梯度下降训练的RBF神经网络混合学习算法,解决了RBF网络径向基函数的中心取值问题,提高了网络的学习精度和训练速度.将该算法应用于非线性系统的在线辨识与二维函数的逼近,仿真实验结果证明了该方法的有效性. 展开更多
关键词 RBF神经网络 最近邻聚类学习算法 径向基函数 梯度下降法
下载PDF
应用相关近邻局部线性嵌入算法的高光谱遥感影像分类 被引量:13
16
作者 刘嘉敏 罗甫林 +1 位作者 黄鸿 刘亦哲 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1668-1676,共9页
传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN... 传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定.针对此问题,本文提出了相关近邻(CN)LIE(CN-LLE)和相关最近邻分类(CNN)算法.提出的算法首先利用相关系数度量数据间的近邻,实现更准确的局部重构,提取鉴别特征;然后用CNN对低维嵌入特征进行分类.在KSC和Indian Pine高光谱遥感数据集上的地物分类实验结果表明:本文提出的CN-LLE+ CNN算法比LLE、LLE+CNN和CN-LLE等算法的总分类精度提升了2.11%~11.55%,Kappa系数提升了0.026~0.143.由于该算法增加了近邻为同类的概率,便于更有效地提取同类数据的鉴别特征,且有更好的稳定性,故能更有效地实现高光谱遥感数据的地物分类. 展开更多
关键词 高光谱影像分类 流形学习 局部线性嵌入 相关近邻 相关最近邻分类器
下载PDF
一种基于预分类的高效最近邻分类器算法 被引量:8
17
作者 王卫东 郑宇杰 +1 位作者 杨静宇 杨健 《计算机科学》 CSCD 北大核心 2007年第2期198-200,共3页
本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸... 本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸库上的实验结果说明,该算法对小样本数据的识别具有明显优势。 展开更多
关键词 最近邻分类器 预类别 多分类器组合 小样本问题 人脸识别
下载PDF
基于Stacking元学习策略的电力系统暂态稳定评估 被引量:22
18
作者 叶圣永 王晓茹 +1 位作者 刘志刚 钱清泉 《电力系统保护与控制》 EI CSCD 北大核心 2011年第6期12-16,23,共6页
为提高电力系统暂态稳定评估单个模型的准确率,研究了基于元学习策略的暂态稳定评估问题,提出了支持向量机、决策树、朴素贝叶斯和K最近邻法作为基学习算法,线性回归为元学习算法的Stacking评估模型。该模型将上述基学习算法的概率输出... 为提高电力系统暂态稳定评估单个模型的准确率,研究了基于元学习策略的暂态稳定评估问题,提出了支持向量机、决策树、朴素贝叶斯和K最近邻法作为基学习算法,线性回归为元学习算法的Stacking评估模型。该模型将上述基学习算法的概率输出作为新训练数据的输入特征,同时保留原始的类标识。线性回归算法在新训练集上学习得到最终暂态稳定评估结果。新英格兰39节点测试系统和IEEE50机测试系统上仿真实现了该模型,仿真结果证明所提模型比单个模型的评估性能更好,为电力系统暂态稳定评估提供了新的思路。 展开更多
关键词 暂态稳定评估 朴素贝叶斯 支持向量机 决策树 K最近邻法 Stacking算法
下载PDF
周期分类和Single-Pass聚类相结合的话题识别与跟踪方法 被引量:28
19
作者 税仪冬 瞿有利 黄厚宽 《北京交通大学学报》 CAS CSCD 北大核心 2009年第5期85-89,共5页
针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定... 针对增量式聚类初始时话题模型不够充分和准确,随处理报道数量增加,误检与漏检的累积效应被放大的问题,提出了周期分类和Single-Pass聚类相结合的话题识别与跟踪方法.首先采用增量式聚类算法进行话题识别与跟踪,当新闻文本每积累到一定程度之后,对已经聚类的报道进行周期分类,使话题簇精度提高,从而提高后续话题识别与跟踪精度.实验表明这种方法是有效的,能够降低漏检率与错检率,减少归一化错误识别代价. 展开更多
关键词 话题识别与跟踪 增量聚类 文本分类 k-最近邻方法分类
下载PDF
基于MB-LBP和HOG的掌纹识别 被引量:14
20
作者 岑瑶 潘新 +1 位作者 郜晓晶 刘霞 《计算机应用研究》 CSCD 北大核心 2017年第3期920-923,共4页
掌纹识别是模式识别及智能信息处理领域的研究热点。针对传统掌纹识别方法易受噪声影响,且旋转鲁棒性差的问题,提出基于分区的多块局部二值模式(MB-LBP)和梯度方向直方图(HOG)的掌纹识别方法。该算法利用分区MB-LBP和HOG算法分别提取掌... 掌纹识别是模式识别及智能信息处理领域的研究热点。针对传统掌纹识别方法易受噪声影响,且旋转鲁棒性差的问题,提出基于分区的多块局部二值模式(MB-LBP)和梯度方向直方图(HOG)的掌纹识别方法。该算法利用分区MB-LBP和HOG算法分别提取掌纹的纹理、边缘特征,将提取的两种特征通过串联的方式进行融合,最后计算测试图像与训练图像的绝对值距离并利用最近邻分类器得出分类结果。实验对比传统算法(PCA、LBP和HOG),得到较高的掌纹识别率。因此,将基于分区多块局部二值模式与梯度方向直方图特征进行融合,可提取较完整的掌纹有效信息,对于光照不均匀和有位置变化的掌纹具有一定的健壮性,具有良好的掌纹识别性能。 展开更多
关键词 掌纹识别 多块二值模式 梯度方向直方图 最近邻分类 绝对值距离
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部