期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
基于机器学习的冠心病风险预测模型构建与比较
1
作者 岳海涛 何婵婵 +3 位作者 成羽攸 张森诚 吴悠 马晶 《中国全科医学》 CAS 北大核心 2025年第4期499-509,共11页
背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目... 背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目的探索冠心病的影响因素,通过使用2种平衡数据的方法,基于5种算法建立冠心病风险相关的预测模型,比较这5种模型对冠心病风险的预测价值。方法基于2021年美国国家行为风险因素监测系统(BRFSS)横断面调查数据筛选出112606名研究对象的健康相关风险行为、慢性健康状况等24个变量信息,结局指标为自我报告是否患有冠心病并据此分为冠心病组和非冠心病组。通过进行单因素分析和逐步Logistic回归分析探索冠心病发生的影响因素并筛选出纳入预测模型的变量。随机抽取112606名受访者的10%(共计11261名),以8∶2的比例随机划分为训练与测试的数据集,采用随机过采样和合成少数过采样技术(SMOTE)两种过采样的方法处理不平衡数据,基于k最邻近算法(KNN)、Logistic回归、支持向量机(SVM)、决策树和XGBoost算法分别建立冠心病预测模型。结果两组年龄、性别、BMI、种族、婚姻状态、教育水平、收入水平、家里有几个孩子、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者、过去30 d内是否有体育锻炼、心理健康状况以及自我健康评价比较,差异有统计学意义(P<0.05)。逐步Logistic回归分析结果显示:年龄、性别、BMI、种族、教育水平、收入水平、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者以及自我健康评价为冠心病的影响因素(P<0.05)。风险模型构建的分析结果显示:k最邻近算法、Logistic回归、支持向量机、决策树和XGBoost采用SMOTE处理不平衡数据的总体分类精度分别为59.2%、67.4%、66.2%、69.2%和85.9%,召回率分别为75.2%、71.4%、70.5%、62.9%和34.8%,精确度分别为15.4%、18.2%、17.5%、17.6%和28.7%,F值分别为0.256、0.290、0.280、0.275和0.315,受试者工作特征曲线下面积分别为0.80、0.78、0.72、0.72和0.82;采用随机过采样处理不平衡数据的总体分类精度分别为62.5%、68.5%、69.0%、60.2%和70.1%,召回率分别为70.0%、69.5%、71.9%、69.0%和67.6%;精确度分别为15.8%、18.4%、19.1%、14.8%和19.0%,F值分别为0.258、0.291、0.302、0.244和0.297,受试者工作特征曲线下面积分别为0.80、0.77、0.72、0.72和0.83。结论本研究不仅确认了已知冠心病的影响因素,还发现了自我健康评价水平、收入水平和教育水平对冠心病具有潜在影响。在使用2种数据平衡方法后,5种算法的性能显著提高。其中XGBoost模型表现最佳,可作为未来优化冠心病预测模型的参考。此外,鉴于XGBoost模型的优异性能以及逐步Logistic回归的操作便捷和可解释性,推荐在冠心病风险预测模型中结合使用数据平衡后的XGBoost和逐步Logistic回归分析。 展开更多
关键词 冠心病 机器学习 风险预测模型 LOGISTIC回归 k最邻近算法 支持向量机 决策树 XGBoost
下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
2
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM ALGORITHM GAUSSIAN MIXTURE model K-nearest neighbor K-MEANS ALGORITHM INITIALIZATION
下载PDF
k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1
3
作者 QIN GENGSHENG (Department of Mathematics,Sichuan University, Chengdu 610064). 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est... Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). 展开更多
关键词 Partial linear model censored data class K method k-nearest neighbor weights
下载PDF
An imputation/copula-based stochastic individual tree growth model for mixed species Acadian forests: a case study using the Nova Scotia permanent sample plot network
4
作者 John A. Kershaw Jr Aaron R. Weiskittel +1 位作者 Michael B. Lavigne Elizabeth McGarrigle 《Forest Ecosystems》 SCIE CSCD 2017年第4期251-263,共13页
Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection... Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design. 展开更多
关键词 nearest neighbor imputation Copula sampling Individual tree growth model Mortality INGROWTH Mixed species stand development Acadian forests Nova Scotia
下载PDF
ML组合的CYGNSS海面风速反演质量控制模型
5
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:1
6
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 K近邻算法 分类模型
下载PDF
结合最近邻图模型的稀疏ISAR成像方法
7
作者 胡长雨 陈春风 +3 位作者 易文忆 董宇宸 李晖 汪玲 《电子学报》 EI CAS CSCD 北大核心 2024年第1期170-180,共11页
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然... 逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然稀疏特性着重刻画点状特征,变换域稀疏表示可增强目标图像的纹理等通用特征.通过学习获得的稀疏变换字典,可自适应于待成像的ISAR目标场景,找到面向ISAR目标图像块的特有稀疏表示.但是,图像块的特有稀疏表示中忽略了待成像目标场景中目标的几何特征信息.最近邻图模型可建立给定数据的几何特征描述算子,刻画出给定数据的几何特征信息.本文利用最近邻图模型来刻画待成像目标场景中目标的几何特征信息,并映射到待成像目标场景的特有稀疏表示中;提出结合最近邻图模型的ISAR稀疏成像方法,用于不同类别实测ISAR数据成像.相比已有的ISAR稀疏成像方法,所提成像方法可获得目标轮廓更清晰的成像结果,成像所需时间平均减少10.4%. 展开更多
关键词 逆合成孔径雷达 稀疏成像 最近邻图模型 稀疏表示 字典学习
下载PDF
面向城市轨道交通智能运维的数据耦合性与独立一致性研究
8
作者 倪弘韬 胡佳乔 +2 位作者 吴强 李楠 陈君林 《城市轨道交通研究》 北大核心 2024年第5期6-10,共5页
[目的]智能运维背景下,现有算法准确度低,导致虚警率高,因此有必要开展列车运营数据的耦合性分析与独立一致性研究。[方法]从统计和数据驱动的角度对耦合性与独立一致性进行定义;根据加速度绝对值变化率将列车运行状态分为4个阶段:静止... [目的]智能运维背景下,现有算法准确度低,导致虚警率高,因此有必要开展列车运营数据的耦合性分析与独立一致性研究。[方法]从统计和数据驱动的角度对耦合性与独立一致性进行定义;根据加速度绝对值变化率将列车运行状态分为4个阶段:静止、平稳运行、起动加速及制动减速,并分别生成对应数据切片综合分位图、相关系数等方法;对牵引系统、制动系统累计正线运营数据进行分析,量化系统间的耦合关系;通过构建线性回归模型、支持向量机模型、LightGBM模型和K-近邻模型对于数据进行解耦处理,使牵引制动系统数据呈现正态性,相关变量服从独立性与一致性,以满足联合条件概率分布的前置条件。[结果及结论]数据解耦操作能够提升系统间原始数据的独立一致性;从工程实用角度出发,LightGBM模型在实时与离线状态下表现出最优的性能,在所有量化分析中均取得了50%及以上的优化率;采用解耦后的数据,能够在故障样本较少或者缺失的情况下,实现对潜在故障的预警功能,能有效降低智能运维的虚警率,同时提升故障预测的准确性。 展开更多
关键词 轨道交通 智能运维 故障预警 支持向量机 LightGBM模型 K-近邻模型
下载PDF
K最近邻算法在预制菜产业发展中的应用
9
作者 檀巧斌 《农产品加工》 2024年第10期113-116,共4页
预制菜是以一种或多种农产品为主要原料,通过标准化流程操作,经过预先加工或预先烹调而成,并最终进行预先包装的成品或半成品菜肴。近年来,该行业快速发展,K最近邻(K-nearest Neighbor,KNN)分类算法被视为基础的分类与回归方法之一,具... 预制菜是以一种或多种农产品为主要原料,通过标准化流程操作,经过预先加工或预先烹调而成,并最终进行预先包装的成品或半成品菜肴。近年来,该行业快速发展,K最近邻(K-nearest Neighbor,KNN)分类算法被视为基础的分类与回归方法之一,具有较为成熟的理论基础,是机器学习领域中被广泛应用的算法之一。综述了预制菜的发展史、分类、现状,最近邻算法基本原理及K最近邻算法模型在预制菜产业发展中的应用研究,以期对预制菜应用领域科研攻关的方向、产业的发展研究提供参考。 展开更多
关键词 预制菜 最近邻算法 K最近邻算法模型
下载PDF
基于参考向量关联估计的离线多目标优化算法
10
作者 李睿 孙超利 张国晨 《计算机与数字工程》 2024年第9期2577-2582,共6页
很多实际工程和科学问题都是计算费时的多目标优化问题,这类问题中每个候选解的评价往往都非常费时,因此仅允许使用少量真实评价。论文采用离线数据驱动的进化算法求解计算费时多目标优化问题,以期节省优化时间。论文通过训练代理模型... 很多实际工程和科学问题都是计算费时的多目标优化问题,这类问题中每个候选解的评价往往都非常费时,因此仅允许使用少量真实评价。论文采用离线数据驱动的进化算法求解计算费时多目标优化问题,以期节省优化时间。论文通过训练代理模型来估计候选解的收敛性,采用最近邻样本估计候选解与参考向量的关联关系,减少了使用目标估值计算候选解与参考向量夹角大小所产生的误差累积。使用DTLZ测试集验证论文算法的有效性,论文算法与离线数据驱动的优化算法MS-RV以及三个经典在线数据驱动优化算法进行对比,实验结果表明论文提出的算法在保证性能的前提下,可以减少使用真实的评价次数。 展开更多
关键词 计算费时的多目标优化问题 代理模型 离线数据驱动优化 最近邻估计
下载PDF
基于对比学习和注意力机制的文本分类方法
11
作者 钱来 赵卫伟 《计算机工程》 CAS CSCD 北大核心 2024年第7期104-111,共8页
文本分类作为自然语言处理领域的基本任务,在信息检索、机器翻译和情感分析等应用中发挥着重要作用。然而大多数深度模型在预测时未充分考虑训练实例的丰富信息,导致学到的文本特征不够全面。为了充分利用训练实例信息,提出一种基于对... 文本分类作为自然语言处理领域的基本任务,在信息检索、机器翻译和情感分析等应用中发挥着重要作用。然而大多数深度模型在预测时未充分考虑训练实例的丰富信息,导致学到的文本特征不够全面。为了充分利用训练实例信息,提出一种基于对比学习和注意力机制的文本分类方法。首先,设计一种有监督对比学习训练策略,旨在优化模型对文本向量表征的检索,提高模型在推理过程中检索到的训练实例的质量;然后,构建注意力机制,对获取的训练文本特征进行注意力分布学习,聚焦关联性更强的相邻实例信息,获得更多隐含的相似特征;最后,将注意力机制与模型网络相结合,融合相邻的训练实例信息,增强模型提取多样性特征的能力,实现全局特征和局部特征的提取。实验结果表明,所提方法在卷积神经网络(CNN)、双向长短期记忆网络(Bi LSTM)、图卷积网络(GCN)、BERT和Ro BERTa等多个模型上都取得了显著的性能提升。以CNN模型为例,其在THUCNews数据集、今日头条数据集和搜狗数据集上宏F1值分别提高了4.15、6.2和1.92个百分点。因此,该方法也为文本分类任务提供了一种有效的解决方案。 展开更多
关键词 文本分类 深度模型 对比学习 近似最近邻算法 注意力机制
下载PDF
基于PCA降维的MNIST手写数字识别优化
12
作者 田春婷 《现代信息科技》 2024年第16期64-68,共5页
PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类... PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类模型,以及选取不同分类算法作为基础分类器的集成学习方法,实现手写数字识别。在对MNIST数据集进行PCA降维前后,以及不同分类算法和模型执行结果的时间复杂度与预测准确率进行比对与分析,进一步强化与优化手写数字识别准确率等各项指标。 展开更多
关键词 PCA降维 MNIST手写数字识别 K-邻近算法 决策树 SVC分类模型 集成学习
下载PDF
基于矩阵分解与用户近邻模型的协同过滤推荐算法 被引量:51
13
作者 杨阳 向阳 熊磊 《计算机应用》 CSCD 北大核心 2012年第2期395-398,共4页
针对个性化推荐系统中协同过滤算法面对的矩阵稀疏和新使用者问题,提出基于矩阵分解与用户近邻模型的推荐算法。通过对用户档案信息构建近邻模型以保证新使用者预测的准确性;同时考虑到数据量大和矩阵稀疏会引起时间和空间复杂度过高等... 针对个性化推荐系统中协同过滤算法面对的矩阵稀疏和新使用者问题,提出基于矩阵分解与用户近邻模型的推荐算法。通过对用户档案信息构建近邻模型以保证新使用者预测的准确性;同时考虑到数据量大和矩阵稀疏会引起时间和空间复杂度过高等问题,引入奇异值矩阵分解的方式,从而减小矩阵稀疏和数据量大的影响,提高推荐系统的准确性。实验结果表明,该算法能有效解决大数据量的矩阵稀疏问题以及新使用者问题。 展开更多
关键词 协同过滤 矩阵分解 用户近邻模型 电子商务 推荐算法
下载PDF
基于密度的离群噪声点检测 被引量:13
14
作者 张毅 刘旭敏 关永 《计算机应用》 CSCD 北大核心 2010年第3期802-805,809,共5页
针对三维扫描仪获取的带噪声和离群点的点云数据,提出了基于局部离群点概念的去噪算法。通过k-近邻(KNN)搜索建立散乱点之间的拓扑关系,进而计算当前测点的局部离群因子以衡量该点的离群程度,从而限制噪声并剔除离群点。重点解决了高密... 针对三维扫描仪获取的带噪声和离群点的点云数据,提出了基于局部离群点概念的去噪算法。通过k-近邻(KNN)搜索建立散乱点之间的拓扑关系,进而计算当前测点的局部离群因子以衡量该点的离群程度,从而限制噪声并剔除离群点。重点解决了高密度扫描点云周围分布的低密度离群噪声点的识别问题。实验结果证明,该算法能有效检测出紧挨模型边界的噪声点,并最大限度地保持模型边界。 展开更多
关键词 局部离群点 K-近邻 模型边界 去噪
下载PDF
年径流预测的自适应NNBR-ANN耦合模型 被引量:13
15
作者 万星 丁晶 +1 位作者 严秉忠 张晓丽 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2005年第5期5-8,共4页
以基本遗传算法为基础,优化人工神经网络与最近邻耦合模型的基本参数,得到无参数的自适应NNBR-ANN耦合模型。应用此模型对黄河青铜峡年平均流量进行预测,并与单独的人工神经网络模型和最近邻抽样回归模型预测结果进行比较分析。结果表明... 以基本遗传算法为基础,优化人工神经网络与最近邻耦合模型的基本参数,得到无参数的自适应NNBR-ANN耦合模型。应用此模型对黄河青铜峡年平均流量进行预测,并与单独的人工神经网络模型和最近邻抽样回归模型预测结果进行比较分析。结果表明:此方法将模型的基本参数进行优化处理,打破传统的定参方法,用于径流预测更加方便适用,且预测精度更高。 展开更多
关键词 中长期预测 耦合模型 人工神经网络 最近邻抽样回归模型 遗传算法
下载PDF
基于词向量空间模型的中文文本分类方法 被引量:14
16
作者 胡学钢 董学春 谢飞 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第10期1261-1264,共4页
大多文本分类方法是基于向量空间模型的,基于这一模型的文本向量维数较高,导致分类器效率难以提高。针对这一不足,该文提出基于词向量空间模型的文本分类方法。其主要思想是把文本的特征词表示成空间向量,通过训练得到词-类别支持度矩阵... 大多文本分类方法是基于向量空间模型的,基于这一模型的文本向量维数较高,导致分类器效率难以提高。针对这一不足,该文提出基于词向量空间模型的文本分类方法。其主要思想是把文本的特征词表示成空间向量,通过训练得到词-类别支持度矩阵,根据待分文本的词和词-类别支持度矩阵计算文本与类别的相似度。实验证明,这一分类方法取得了较高的分类精度和分类效率。 展开更多
关键词 文本分类 向量空间模型 K-最近邻居 词向量空间模型
下载PDF
改进的神经网络模型在水文模拟中的应用 被引量:10
17
作者 阚光远 李致家 +2 位作者 刘志雨 李巧玲 胡友兵 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期294-299,共6页
将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对... 将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。 展开更多
关键词 水文模型 BP神经网络 K-最近邻算法 新安江模型 NSGA-Ⅱ算法 呈村流域 东湾流域 大阁流域
下载PDF
RBF神经网络在股市趋势预测中的应用 被引量:17
18
作者 朱赟 王行愚 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期547-550,共4页
将 RBF神经网络应用在股市趋势预测中 ,RBF网络中心点的选取采用最近邻聚类学习算法 ,以上证指数和基金裕阳为对象进行建模与预测 ,结果表明 ,此种网络具有较好的学习和泛化能力 ,在股市趋势预测中取得了较好的效果。
关键词 RBF神经网络 趋势预测 股票市场 最近邻聚类学习算法 股价分析 网络结构
下载PDF
延安市近50年来降水特征及趋势变化的小波分析研究 被引量:18
19
作者 琚彤军 石辉 胡庆 《干旱地区农业研究》 CSCD 北大核心 2008年第4期230-235,共6页
利用Morlet小波对延安1952-2003年52年间的降水量进行了多时间尺度分析,结果表明,延安降水在3-6 a和25-32 a的时间尺度上变化较强,存在近22 a和3 a的降水周期,其中22 a的周期变化最为强烈。根据降水周期,延安年降水在2003年后的5-8 a内... 利用Morlet小波对延安1952-2003年52年间的降水量进行了多时间尺度分析,结果表明,延安降水在3-6 a和25-32 a的时间尺度上变化较强,存在近22 a和3 a的降水周期,其中22 a的周期变化最为强烈。根据降水周期,延安年降水在2003年后的5-8 a内相对偏多,2007-2009年左右达到最大值,然后降水量开始减少,从2013年左右开始进入一个约10 a的少雨阶段。基于1952-1990年降水量资料,建立小波变换的最近邻抽样回归模型,用1990-2003年13 a的年降水量变化作为校验,13年中有11年的预测结果相对误差小于30%,说明小波分析和最近邻抽样回归模型结合可以较好地预测降水量的年际变化。 展开更多
关键词 降水 小波分析 最近邻抽样回归模型 延安市
下载PDF
最近邻抽样回归模型在水文水资源预报中的应用 被引量:59
20
作者 王文圣 向红莲 丁晶 《水电能源科学》 2001年第2期8-10,共3页
介绍了最近邻抽样回归模型进行单因子和多因子预测建模的基本思想和实现算法。通过水文水资源中的两个实例对 NNBR模型的预测效果进行了验证 ,并与自回归模型。
关键词 最近邻抽样回归模型 自回归模型 水文水资源 预报
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部