The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv...The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm.展开更多
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est...Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).展开更多
Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection...Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.展开更多
将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对...将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。展开更多
文摘The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm.
文摘Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).
文摘Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.
文摘将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。