A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underly...A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.展开更多
Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test run...Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test runs, the number of executed test cases. This paper discusses discrete software reliability measurement based on a discretized nonhomogeneous Poisson process (NHPP) model. Especially, we use a bootstrapping method in our discrete software reliability measurement for discussing the statistical inference on parameters and software reliability assessment measures of our model. Finally we show numerical examples of interval estimations based on our bootstrapping method for the several software reliability assessment measures by using actual data.展开更多
Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance lar...Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger than the mean and therefore both models are appropriate to model over-dispersed count data. Objectives: A new two-parameter probability distribution called the Quasi-Negative Binomial Distribution (QNBD) is being studied in this paper, generalizing the well-known negative binomial distribution. This model turns out to be quite flexible for analyzing count data. Our main objectives are to estimate the parameters of the proposed distribution and to discuss its applicability to genetics data. As an application, we demonstrate that the QNBD regression representation is utilized to model genomics data sets. Results: The new distribution is shown to provide a good fit with respect to the “Akaike Information Criterion”, AIC, considered a measure of model goodness of fit. The proposed distribution may serve as a viable alternative to other distributions available in the literature for modeling count data exhibiting overdispersion, arising in various fields of scientific investigation such as genomics and biomedicine.展开更多
Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prog...Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prognostic model of cervical spinal cord injury without radiological abnormality. This retrospective analysis included 43 patients with cervical spinal cord injury without radiological abnormality. Seven potential factors were assessed: age, sex, external force strength causing damage, duration of disease, degree of cervical spinal stenosis, Japanese Orthopaedic Association score, and physiological cervical curvature. A model was established using multiple binary logistic regression analysis. The model was evaluated by concordant profiling and the area under the receiver operating characteristic curve. Bootstrapping was used for internal validation. The prognostic model was as follows: logit(P) =-25.4545 + 21.2576 VALUE + 1.2160SCORE-3.4224 TIME, where VALUE refers to the Pavlov ratio indicating the extent of cervical spinal stenosis, SCORE refers to the Japanese Orthopaedic Association score(0–17) after the operation, and TIME refers to the disease duration(from injury to operation). The area under the receiver operating characteristic curve for all patients was 0.8941(95% confidence interval, 0.7930–0.9952). Three factors assessed in the predictive model were associated with patient outcomes: a great extent of cervical stenosis, a poor preoperative neurological status, and a long disease duration. These three factors could worsen patient outcomes. Moreover, the disease prognosis was considered good when logit(P) ≥-2.5105. Overall, the model displayed a certain clinical value. This study was approved by the Biomedical Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University, China(approval number: 2018063) on May 8, 2018.展开更多
The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the...The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.展开更多
文摘A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.
文摘Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test runs, the number of executed test cases. This paper discusses discrete software reliability measurement based on a discretized nonhomogeneous Poisson process (NHPP) model. Especially, we use a bootstrapping method in our discrete software reliability measurement for discussing the statistical inference on parameters and software reliability assessment measures of our model. Finally we show numerical examples of interval estimations based on our bootstrapping method for the several software reliability assessment measures by using actual data.
文摘Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger than the mean and therefore both models are appropriate to model over-dispersed count data. Objectives: A new two-parameter probability distribution called the Quasi-Negative Binomial Distribution (QNBD) is being studied in this paper, generalizing the well-known negative binomial distribution. This model turns out to be quite flexible for analyzing count data. Our main objectives are to estimate the parameters of the proposed distribution and to discuss its applicability to genetics data. As an application, we demonstrate that the QNBD regression representation is utilized to model genomics data sets. Results: The new distribution is shown to provide a good fit with respect to the “Akaike Information Criterion”, AIC, considered a measure of model goodness of fit. The proposed distribution may serve as a viable alternative to other distributions available in the literature for modeling count data exhibiting overdispersion, arising in various fields of scientific investigation such as genomics and biomedicine.
基金supported by the National Natural Science Foundation of China,No.30672136(to HPL)
文摘Some studies have suggested that early surgical treatment can effectively improve the prognosis of cervical spinal cord injury without radiological abnormality, but no research has focused on the development of a prognostic model of cervical spinal cord injury without radiological abnormality. This retrospective analysis included 43 patients with cervical spinal cord injury without radiological abnormality. Seven potential factors were assessed: age, sex, external force strength causing damage, duration of disease, degree of cervical spinal stenosis, Japanese Orthopaedic Association score, and physiological cervical curvature. A model was established using multiple binary logistic regression analysis. The model was evaluated by concordant profiling and the area under the receiver operating characteristic curve. Bootstrapping was used for internal validation. The prognostic model was as follows: logit(P) =-25.4545 + 21.2576 VALUE + 1.2160SCORE-3.4224 TIME, where VALUE refers to the Pavlov ratio indicating the extent of cervical spinal stenosis, SCORE refers to the Japanese Orthopaedic Association score(0–17) after the operation, and TIME refers to the disease duration(from injury to operation). The area under the receiver operating characteristic curve for all patients was 0.8941(95% confidence interval, 0.7930–0.9952). Three factors assessed in the predictive model were associated with patient outcomes: a great extent of cervical stenosis, a poor preoperative neurological status, and a long disease duration. These three factors could worsen patient outcomes. Moreover, the disease prognosis was considered good when logit(P) ≥-2.5105. Overall, the model displayed a certain clinical value. This study was approved by the Biomedical Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University, China(approval number: 2018063) on May 8, 2018.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10571008, 10871013)Beijing Natural Science Foundation (Grant No. 1072004)Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20070005003)
文摘The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.