In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairin...In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairing interaction on the fragment mass distribution and its dependence on nuclear elongation.The significant role of pairing interactions in the fragment mass distributions of^(230)Th,^(234)U,^(240)Pu,and^(246)Cm was demonstrated.Numerical analysis revealed that increasing the pairing interaction strength decreased the asymmetric fragment mass distribution and increased the symmetric distribution.Furthermore,the odd-even mass differences at symmetric and asymmetric fission points were examined,highlighting their sensitivity to changes in the pairing interaction strength.Systematic analysis of the Th,U,Pu,and Cm isotope fragment mass distributions demonstrated the effectiveness of the model in reproducing the experimental data.In addition,the effects of the zero-point energy and half-width parameter on the fragment mass distribution for^(240)Pu were explored.Thus,this study provides valuable insights into the fission process by emphasizing the importance of pairing interactions and their relationship with nuclear elongation.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
This paper is committed to exploring the importance of learner learner interaction for language learning. It starts with a discussion of the roles that learner learner interaction plays in language learning from two p...This paper is committed to exploring the importance of learner learner interaction for language learning. It starts with a discussion of the roles that learner learner interaction plays in language learning from two points of view pedagogic and psycholinguistic, which is followed by a brief guideline for organizing group work in class.展开更多
A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method....A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.展开更多
The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
It is shown that the approximation of a strong Coulomb interaction between electrons results in a new model of the atom with a spatial quantization of electrons accompanied by their quantization in energy. This model ...It is shown that the approximation of a strong Coulomb interaction between electrons results in a new model of the atom with a spatial quantization of electrons accompanied by their quantization in energy. This model implies that electrons rotate in circular orbits centered outside the atomic nucleus and only orbit axes pass through it. The Coulomb interaction between electrons leads to a spherically symmetric distribution of their orbits on the surfaces of equipotential spheres of a spherically symmetric electrostatic field of the nucleus. The distribution is similar to “inscribing” electron orbits into faces of regular nucleus-centered polyhedra so each polyhedron corresponds to a certain electron state (s, p, d, f), and a certain set of polyhedra corresponds to a certain period of the Mendeleev Table. It is shown that a spherically symmetric distribution of electron orbits gives rise to the formation of electron pairs in which electron orbits with a common axis are located symmetrically with respect to the nucleus and the orbital magnetic moments of the electrons are oppositely directed. The physical meaning of the electron spin concept becomes clear. The spin turns out to be related to the orbital magnetic moment of an electron and reflects the fact that two electrons of a pair rotate in opposite directions relative to their common axis. So the spin is one of characteristics of the electron state in the atom associated with electron rotation in the orbit centered outside the nucleus. The atomic model gives an insight into the periodicity of changes in the atomic properties with increasing nuclear charge and the reasons for an electron double energy quantization associated with different states and periods. The model shows that the atomic structure and properties can be explained by using concepts of classical mechanics and classical electrodynamics which regard the electron as a particle.展开更多
[目的]利用本课题组发展的定量分析方法研究激发态DNA碱基对分子间相互作用的本质,以及不同类型的电子跃迁对DNA碱基对分子间相互作用的影响.[方法]采用广义Kohn-Sham能量分解分析方法(generalized Kohn-Sham based energy decompositio...[目的]利用本课题组发展的定量分析方法研究激发态DNA碱基对分子间相互作用的本质,以及不同类型的电子跃迁对DNA碱基对分子间相互作用的影响.[方法]采用广义Kohn-Sham能量分解分析方法(generalized Kohn-Sham based energy decomposition analysis,GKS-EDA),对两种Waston-Crick构型和两种stacked构型的DNA碱基对分子间相互作用本质进行理论研究.[结果]对于Waston-Crick构型的碱基对,n→π^(*)跃迁削弱了轨道极化作用但加强了电子相关作用,激发态分子间相互作用由电子相关作用主导,而π→π^(*)跃迁对分子间氢键影响较小;对于stacked构型的碱基对,π→π^(*)跃迁削弱了静电相互作用但增强了电子相关作用.[结论]Waston-Crick构型碱基对分子间相互作用本质受电子激发跃迁影响较大,而电子激发跃迁基本不改变stacked构型碱基对分子间相互作用本质.展开更多
In this paper we study a given system of two identical nucleons in the presence of an attractiveδinteraction.We derive the formulas for energies of identical nucleons with the configuration|j_1j_2J>explicitly,and ...In this paper we study a given system of two identical nucleons in the presence of an attractiveδinteraction.We derive the formulas for energies of identical nucleons with the configuration|j_1j_2J>explicitly,and explain all empirical rules of the energy level ordering with spin J and parity,deep understandings of which have been desirable for a few decades.We also proved analytically that the energy interval between the lowest level and the second lowest level is larger than the sum of intervals of all other successive levels,thus present a sound explanation of the large energy gap between the ground state and the first excited state of such system.展开更多
Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in meas...Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in measuring interaction and in integrity issues.To evaluate the overall interaction among loops,we propose a statistics-based criterion via enumerating all possible combinations of loop statuses.Furthermore,we quantify the traditional concept of integrity to represent the extent of integrity of a decentralized control system.Thus,we propose that a pairing decision should be made by taking both factors into consideration.Two examples are provided to illustrate the effectiveness of the proposed criterion.展开更多
We calculate the two-proton decay width of the6 Be nucleus employing the schematic densitydependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent meth...We calculate the two-proton decay width of the6 Be nucleus employing the schematic densitydependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent method, in which the two-proton emission is described as a time-evolution of a threebody meta-stable state. Model-dependence of the two-proton decay width has been shown by comparing the results obtained with the two different pairing models, schematic density-dependent contact and Minnesota interactions, which have zero and finite ranges, respectively.展开更多
The paper discusses the researches that formed the basis of the study of the transition of “ordering-phase separation” and the reasons for such transition occurrence. Experimental results have presented what diffusi...The paper discusses the researches that formed the basis of the study of the transition of “ordering-phase separation” and the reasons for such transition occurrence. Experimental results have presented what diffusion pairs are and how they occur in binary and multicomponent alloys. The paper illustrates that the chemical bonds between atoms are realized on the principle of pair interaction in both solid and liquid states of the alloy. The process of separating a multi-component ABC alloy into diffusion pairs A/B, A/C, and B/C occurs in a liquid solution, where the diffusion mobility of atoms is very high, and the resistance of the environment is relatively low. The driving force of such a process is the chemical attraction between like and unlike atoms, that is, the tendency to phase separation and the tendency to ordering. Quenching the liquid alloy into the water fixes a microstructure consisting of microscopic areas corresponding in composition to one or another diffusion pairs. The paper shows what exactly should be done so that such a branch of science as Materials Science could get rid of the empirical approach when creating new alloys.展开更多
A modified selectively infective phage (SIP) is developed to facilitate the selection of interacting antibody antigen pairs from a large single chain antibody (scFv) library in vivo. The system is constructed with a m...A modified selectively infective phage (SIP) is developed to facilitate the selection of interacting antibody antigen pairs from a large single chain antibody (scFv) library in vivo. The system is constructed with a modified helper phage M13KO7 and phagemid pCANTAB 5 E. The antigen fused to the C terminal of N1 N2 domain and the scFv to the N terminal of CT domain of the gIIIp of filamentous phage are encoded on the phage and phagemid vectors respectively. The phages produced by co transformants restore infectivity via interaction between antigen and antibody fusions in the cell periplasm. In a model system, the scFv fragment of the anti hemagglutinin 17/9 antibody and its corresponding antigen are detected in the presence of a 10 5 fold excess of a non interacting control pairs, which demonstrates this system to be very sensitive and facile to screen a large single chain antibody library.展开更多
The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs making them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of energy...The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs making them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of energy required to transform the excitation energy of a coupled pair into the one-electron excitation energy. For an extremely thin potential tube the coupling energy of the pair tends to infinity. The gas energy is unstable with respect to the pair excitation which provides a kind of gap near the Fermi level. A decisive part of the gap energy is due to the electron-electron interaction. The gap is attained on condition the length of a thin potential box exceeds some critical value. In the next step, a coherence length in the gas is obtained. This length, combined with a critical magnetic field representing a transition from a superconducting to a normal state, allows us to calculate the penetration depth of the magnetic field for the singlet and triplet excitations. The penetration depth together with the critical magnetic field and energy gap can provide us with a critical current, as well as critical temperature for the superconducting state.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.12275115 and 12175097)the Educational Department of Liaoning Province(No.LJKMZ20221410).
文摘In this article,a comprehensive study of the fission process of Th,U,Pu,and Cm isotopes using a Yukawa-folded meanfield plus standard pairing model is presented.The study focused on analyzing the effects of the pairing interaction on the fragment mass distribution and its dependence on nuclear elongation.The significant role of pairing interactions in the fragment mass distributions of^(230)Th,^(234)U,^(240)Pu,and^(246)Cm was demonstrated.Numerical analysis revealed that increasing the pairing interaction strength decreased the asymmetric fragment mass distribution and increased the symmetric distribution.Furthermore,the odd-even mass differences at symmetric and asymmetric fission points were examined,highlighting their sensitivity to changes in the pairing interaction strength.Systematic analysis of the Th,U,Pu,and Cm isotope fragment mass distributions demonstrated the effectiveness of the model in reproducing the experimental data.In addition,the effects of the zero-point energy and half-width parameter on the fragment mass distribution for^(240)Pu were explored.Thus,this study provides valuable insights into the fission process by emphasizing the importance of pairing interactions and their relationship with nuclear elongation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
文摘This paper is committed to exploring the importance of learner learner interaction for language learning. It starts with a discussion of the roles that learner learner interaction plays in language learning from two points of view pedagogic and psycholinguistic, which is followed by a brief guideline for organizing group work in class.
基金Supported by the National Natural Science Foundation of China (21076139, 21106106), Tianjin Natural Science Foundation of China (12JcQNJC3700), and Foundation of Tianjin Educational Committee of China (20100508).
文摘A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
文摘It is shown that the approximation of a strong Coulomb interaction between electrons results in a new model of the atom with a spatial quantization of electrons accompanied by their quantization in energy. This model implies that electrons rotate in circular orbits centered outside the atomic nucleus and only orbit axes pass through it. The Coulomb interaction between electrons leads to a spherically symmetric distribution of their orbits on the surfaces of equipotential spheres of a spherically symmetric electrostatic field of the nucleus. The distribution is similar to “inscribing” electron orbits into faces of regular nucleus-centered polyhedra so each polyhedron corresponds to a certain electron state (s, p, d, f), and a certain set of polyhedra corresponds to a certain period of the Mendeleev Table. It is shown that a spherically symmetric distribution of electron orbits gives rise to the formation of electron pairs in which electron orbits with a common axis are located symmetrically with respect to the nucleus and the orbital magnetic moments of the electrons are oppositely directed. The physical meaning of the electron spin concept becomes clear. The spin turns out to be related to the orbital magnetic moment of an electron and reflects the fact that two electrons of a pair rotate in opposite directions relative to their common axis. So the spin is one of characteristics of the electron state in the atom associated with electron rotation in the orbit centered outside the nucleus. The atomic model gives an insight into the periodicity of changes in the atomic properties with increasing nuclear charge and the reasons for an electron double energy quantization associated with different states and periods. The model shows that the atomic structure and properties can be explained by using concepts of classical mechanics and classical electrodynamics which regard the electron as a particle.
文摘[目的]利用本课题组发展的定量分析方法研究激发态DNA碱基对分子间相互作用的本质,以及不同类型的电子跃迁对DNA碱基对分子间相互作用的影响.[方法]采用广义Kohn-Sham能量分解分析方法(generalized Kohn-Sham based energy decomposition analysis,GKS-EDA),对两种Waston-Crick构型和两种stacked构型的DNA碱基对分子间相互作用本质进行理论研究.[结果]对于Waston-Crick构型的碱基对,n→π^(*)跃迁削弱了轨道极化作用但加强了电子相关作用,激发态分子间相互作用由电子相关作用主导,而π→π^(*)跃迁对分子间氢键影响较小;对于stacked构型的碱基对,π→π^(*)跃迁削弱了静电相互作用但增强了电子相关作用.[结论]Waston-Crick构型碱基对分子间相互作用本质受电子激发跃迁影响较大,而电子激发跃迁基本不改变stacked构型碱基对分子间相互作用本质.
基金National Natural Science Foundation of China(11975151,11961141003)MOE Key Lab for Particle Physics,Astrophysics and Cosmology。
文摘In this paper we study a given system of two identical nucleons in the presence of an attractiveδinteraction.We derive the formulas for energies of identical nucleons with the configuration|j_1j_2J>explicitly,and explain all empirical rules of the energy level ordering with spin J and parity,deep understandings of which have been desirable for a few decades.We also proved analytically that the energy interval between the lowest level and the second lowest level is larger than the sum of intervals of all other successive levels,thus present a sound explanation of the large energy gap between the ground state and the first excited state of such system.
基金supported by the National High-Tech Research and Development Program (863) of China (No.2009AA04Z154)the National Natural Science Foundation of China (No.60736021)
文摘Loop pairing is one of the major concerns when designing decentralized control systems for multivariable processes.Most existing pairing tools,such as the relative gain array(RGA) method,have shortcomings both in measuring interaction and in integrity issues.To evaluate the overall interaction among loops,we propose a statistics-based criterion via enumerating all possible combinations of loop statuses.Furthermore,we quantify the traditional concept of integrity to represent the extent of integrity of a decentralized control system.Thus,we propose that a pairing decision should be made by taking both factors into consideration.Two examples are provided to illustrate the effectiveness of the proposed criterion.
文摘We calculate the two-proton decay width of the6 Be nucleus employing the schematic densitydependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent method, in which the two-proton emission is described as a time-evolution of a threebody meta-stable state. Model-dependence of the two-proton decay width has been shown by comparing the results obtained with the two different pairing models, schematic density-dependent contact and Minnesota interactions, which have zero and finite ranges, respectively.
文摘The paper discusses the researches that formed the basis of the study of the transition of “ordering-phase separation” and the reasons for such transition occurrence. Experimental results have presented what diffusion pairs are and how they occur in binary and multicomponent alloys. The paper illustrates that the chemical bonds between atoms are realized on the principle of pair interaction in both solid and liquid states of the alloy. The process of separating a multi-component ABC alloy into diffusion pairs A/B, A/C, and B/C occurs in a liquid solution, where the diffusion mobility of atoms is very high, and the resistance of the environment is relatively low. The driving force of such a process is the chemical attraction between like and unlike atoms, that is, the tendency to phase separation and the tendency to ordering. Quenching the liquid alloy into the water fixes a microstructure consisting of microscopic areas corresponding in composition to one or another diffusion pairs. The paper shows what exactly should be done so that such a branch of science as Materials Science could get rid of the empirical approach when creating new alloys.
文摘A modified selectively infective phage (SIP) is developed to facilitate the selection of interacting antibody antigen pairs from a large single chain antibody (scFv) library in vivo. The system is constructed with a modified helper phage M13KO7 and phagemid pCANTAB 5 E. The antigen fused to the C terminal of N1 N2 domain and the scFv to the N terminal of CT domain of the gIIIp of filamentous phage are encoded on the phage and phagemid vectors respectively. The phages produced by co transformants restore infectivity via interaction between antigen and antibody fusions in the cell periplasm. In a model system, the scFv fragment of the anti hemagglutinin 17/9 antibody and its corresponding antigen are detected in the presence of a 10 5 fold excess of a non interacting control pairs, which demonstrates this system to be very sensitive and facile to screen a large single chain antibody library.
文摘The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs making them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of energy required to transform the excitation energy of a coupled pair into the one-electron excitation energy. For an extremely thin potential tube the coupling energy of the pair tends to infinity. The gas energy is unstable with respect to the pair excitation which provides a kind of gap near the Fermi level. A decisive part of the gap energy is due to the electron-electron interaction. The gap is attained on condition the length of a thin potential box exceeds some critical value. In the next step, a coherence length in the gas is obtained. This length, combined with a critical magnetic field representing a transition from a superconducting to a normal state, allows us to calculate the penetration depth of the magnetic field for the singlet and triplet excitations. The penetration depth together with the critical magnetic field and energy gap can provide us with a critical current, as well as critical temperature for the superconducting state.