Assuming linear theory, the two-dimensional problem of water wave scattering by a horizontal nearly circular cylinder submerged in infinitely deep water with an ice cover modeled as a thin-elastic plate floating on wa...Assuming linear theory, the two-dimensional problem of water wave scattering by a horizontal nearly circular cylinder submerged in infinitely deep water with an ice cover modeled as a thin-elastic plate floating on water, is investigated here. The cross-section of the nearly circular cylinder is taken as r=a(1+δC(θ)), where a is the radius of the corresponding circular cross-section of the cylinder, δ is a measure of small departure of the cross-section of the cylinder from its circularity and C(θ) is the shape function. Using a simplified perturbation technique the problem is reduced to two independent boundary value problems up to first order in δ. The first one corresponds to water wave scattering by a circular cylinder submerged in water with an ice-cover, while the second problem describes wave radiation by a submerged circular cylinder and involves first order correction to the reflection and transmission coefficients. The corrections are obtained in terms of integrals involving the shape function. Assuming a general Fourier expansion of the shape function, these corrections are evaluated approximately. It is well known that normally incident wave trains experience no reflection by a circular cylinder submerged in infinitely deep water with an ice cover. It is shown here that the reflection coefficient also vanishes up to first order for some particular choice of the shape function representing a nearly circular cylinder. For these cases, full transmission occurs, only change is in its phase which is depicted graphically against the wave number in a number of figures and appropriate conclusions are drawn.展开更多
In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form...In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form of a hypersingular integral equation. The equation is then trans-formed into a similar equation over a circular region using conformal mapping. The equation is solved numerically for the unknown coefficients, which will later be used in finding the stress intensity factors. The sliding and tearing mode stress intensity factors are evaluated for cracks and displayed graphically. Our results seem to agree with the existing asymptotic solution.展开更多
Several fields,such as biological,medical,public health,agricultural sciences,etc.,require circular balanced repeated measurement designs with fewer unequal number of repeated measure-ments than the number of treatmen...Several fields,such as biological,medical,public health,agricultural sciences,etc.,require circular balanced repeated measurement designs with fewer unequal number of repeated measure-ments than the number of treatments.Also,the availability and high cost of experimental subjects in these fields prefer the design in fewer experimental units.However,balancing the carryover effects of the treatments in minimal experimental subjects is one of the problems in this case.In this paper,several new series of minimal circular nearly strongly balanced RMDs in periods of two and three different sizes are constructed.The proposed construction of designs has high efficiency and,therefore,can save the cost of experimentations due to a fewer exper-imental subjects.Most of the designs are very useful because of the unavailability of strongly balanced RMDs for these combinations of parameters.A list of sets of shifts for the construction of minimal circular nearly SBRMDs has also been mentioned in the Appendix.展开更多
基金the financial support from CTS Visitors Program, Indian Institute of Technology, Kharagpur during the tenure of which the revision of the paper has been made
文摘Assuming linear theory, the two-dimensional problem of water wave scattering by a horizontal nearly circular cylinder submerged in infinitely deep water with an ice cover modeled as a thin-elastic plate floating on water, is investigated here. The cross-section of the nearly circular cylinder is taken as r=a(1+δC(θ)), where a is the radius of the corresponding circular cross-section of the cylinder, δ is a measure of small departure of the cross-section of the cylinder from its circularity and C(θ) is the shape function. Using a simplified perturbation technique the problem is reduced to two independent boundary value problems up to first order in δ. The first one corresponds to water wave scattering by a circular cylinder submerged in water with an ice-cover, while the second problem describes wave radiation by a submerged circular cylinder and involves first order correction to the reflection and transmission coefficients. The corrections are obtained in terms of integrals involving the shape function. Assuming a general Fourier expansion of the shape function, these corrections are evaluated approximately. It is well known that normally incident wave trains experience no reflection by a circular cylinder submerged in infinitely deep water with an ice cover. It is shown here that the reflection coefficient also vanishes up to first order for some particular choice of the shape function representing a nearly circular cylinder. For these cases, full transmission occurs, only change is in its phase which is depicted graphically against the wave number in a number of figures and appropriate conclusions are drawn.
基金supported by the Ministry Of Higher Education Malaysia for the Fundamental Research Grant scheme,project No. 01-04-10-897FRthe NSF scholarship
文摘In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form of a hypersingular integral equation. The equation is then trans-formed into a similar equation over a circular region using conformal mapping. The equation is solved numerically for the unknown coefficients, which will later be used in finding the stress intensity factors. The sliding and tearing mode stress intensity factors are evaluated for cracks and displayed graphically. Our results seem to agree with the existing asymptotic solution.
文摘Several fields,such as biological,medical,public health,agricultural sciences,etc.,require circular balanced repeated measurement designs with fewer unequal number of repeated measure-ments than the number of treatments.Also,the availability and high cost of experimental subjects in these fields prefer the design in fewer experimental units.However,balancing the carryover effects of the treatments in minimal experimental subjects is one of the problems in this case.In this paper,several new series of minimal circular nearly strongly balanced RMDs in periods of two and three different sizes are constructed.The proposed construction of designs has high efficiency and,therefore,can save the cost of experimentations due to a fewer exper-imental subjects.Most of the designs are very useful because of the unavailability of strongly balanced RMDs for these combinations of parameters.A list of sets of shifts for the construction of minimal circular nearly SBRMDs has also been mentioned in the Appendix.