Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally const...Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally constant slope. The solution accounts for shoaling, frictional dissipation and will be sufficiently accurate for practical purposes considering the simplified assumptions which are necessary for the treatment of this problem by any method.展开更多
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model i...Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.展开更多
In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave...The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.展开更多
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier T...Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.展开更多
文摘Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally constant slope. The solution accounts for shoaling, frictional dissipation and will be sufficiently accurate for practical purposes considering the simplified assumptions which are necessary for the treatment of this problem by any method.
基金Supported by the National Science Fund for Distinguished Young Scholars (No 40425015)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos KZCX1-YW-12 and KZCX2-YW-201)
文摘Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,41406017,U1406401,41421005)
文摘The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.
基金Project supported by the Open Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant No. 2008491011)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant Nos. 2009585812, 2009586712)+1 种基金the Key Project of Chinese Ministry of Education (Grant No. 20100094120008)supported by the Funds for the Central Universities, Hohai University (Grant No. 2009B00214)
文摘Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.