Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control...Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.展开更多
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitiv...BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
Diamond has an ultrawide bandgap with excellent physical properties,such as high critical electric field,excellent thermal conductivity,high carrier mobility,etc.Diamond with a hydrogen-terminated(H-terminated)surface...Diamond has an ultrawide bandgap with excellent physical properties,such as high critical electric field,excellent thermal conductivity,high carrier mobility,etc.Diamond with a hydrogen-terminated(H-terminated)surface has a negative electron affinity(NEA)and can easily produce surface electrons from valence or trapped electrons via optical absorption,thermal heating energy or carrier transport in a PN junction.The NEA of the H-terminated surface enables surface electrons to emit with high efficiency into the vacuum without encountering additional barriers and promotes further development and application of diamond-based emitting devices.This article reviews the electron emission properties of H-terminated diamond surfaces exhibiting NEA characteristics.The electron emission is induced by different physical mechanisms.Recent advancements in electron-emitting devices based on diamond are also summarized.Finally,the current challenges and future development opportunities are discussed to further develop the relevant applications of diamond-based electronemitting devices.展开更多
Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP)...Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP).However,the transport properties of the CPP mode remain largely unexplored.In this work,current-in-plane(CIP)mode and CPP mode for CrTe_(2) thin films are carefully studied.The temperature-dependent longitudinal resistance transitions from metallic(CIP)to semiconductor behavior(CPP),with the electrical resistivity of CPP increased by five orders of magnitude.More importantly,the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy(Ea)of1.34 meV/gap at 300–150 K,the variable range hopping model with a linear negative magnetoresistance at 150–20 K,and weak localization region with a nonlinear magnetic resistance below 20 K.This study explores the vertical transport in CrTe_(2) materials for the first time,contributing to understand its unique properties and to pave the way for its potential in spin valve devices.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To ...The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin ...Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.展开更多
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar...The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.展开更多
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has...Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.展开更多
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching...Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.展开更多
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo...The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.展开更多
Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in...Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and ac...In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the...Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.展开更多
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137....Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.展开更多
基金supported by the National Natural Science Foundation of China (41941018)the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUEK 2217)the Foundation of Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province (PCMGH-2022-03).
文摘Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.
文摘BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer.However,there is a debate concerning their differential effects on cognitive function,anxiety,and depression in patients undergoing this procedure.AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function,anxiety,depression,and organ function in patients undergoing radical resection of gastric cancer.METHODS A total of 80 patients were involved in this research.The subjects were divided into two groups:Propofol group and sevoflurane group.The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment(LOTCA),and anxiety and depression were assessed with the aid of the self-rating anxiety scale(SAS)and self-rating depression scale(SDS).Hemodynamic indicators,oxidative stress levels,and pulmonary function were also measured.RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group.Additionally,the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group.The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group.Moreover,the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group.CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer.Propofol anesthesia has a minimal effect on patients'pulmonary function,consequently enhancing their postoperative recovery.Sevoflurane anesthesia causes less impairment on patients'cognitive function and mitigates negative emotions,leading to an improved postoperative mental state.Therefore,the selection of anesthetic agents should be based on the individual patient's specific circumstances.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
基金the National Natural Sci-ence Foundation of China(Grant No.62274084)the Fun-damental Research Funds for the Central Universities(Grant No.0210-14380193).
文摘Diamond has an ultrawide bandgap with excellent physical properties,such as high critical electric field,excellent thermal conductivity,high carrier mobility,etc.Diamond with a hydrogen-terminated(H-terminated)surface has a negative electron affinity(NEA)and can easily produce surface electrons from valence or trapped electrons via optical absorption,thermal heating energy or carrier transport in a PN junction.The NEA of the H-terminated surface enables surface electrons to emit with high efficiency into the vacuum without encountering additional barriers and promotes further development and application of diamond-based emitting devices.This article reviews the electron emission properties of H-terminated diamond surfaces exhibiting NEA characteristics.The electron emission is induced by different physical mechanisms.Recent advancements in electron-emitting devices based on diamond are also summarized.Finally,the current challenges and future development opportunities are discussed to further develop the relevant applications of diamond-based electronemitting devices.
基金the National Natural Science Foundation of China(Grant Nos.12241403 and 61974061)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054).
文摘Heterostructures of van der Waals(vdW)ferromagnetic materials have become a focal point in research of lowdimensional spintronic devices.The current direction in spin valves is commonly perpendicular to the plane(CPP).However,the transport properties of the CPP mode remain largely unexplored.In this work,current-in-plane(CIP)mode and CPP mode for CrTe_(2) thin films are carefully studied.The temperature-dependent longitudinal resistance transitions from metallic(CIP)to semiconductor behavior(CPP),with the electrical resistivity of CPP increased by five orders of magnitude.More importantly,the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy(Ea)of1.34 meV/gap at 300–150 K,the variable range hopping model with a linear negative magnetoresistance at 150–20 K,and weak localization region with a nonlinear magnetic resistance below 20 K.This study explores the vertical transport in CrTe_(2) materials for the first time,contributing to understand its unique properties and to pave the way for its potential in spin valve devices.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金supported by the Science and Technology Project of State Grid Corporation of China (No.5200202155587A-0-5-GC)。
文摘The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
基金sponsored by the National Key Research and Development Program of China(Nos.2017YFA0206202 and 2022YFA1203904)the National Natural Science Foundation of China(No.52271160).
文摘Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.
基金provided by the National Natural Science Foundation of China(52074300)the Program of China Scholarship Council(202206430024)+2 种基金the National Natural Science Foundation of China Youth Science(52104139)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)Guizhou province science and technology planning project([2020]3007,[2020]3008)。
文摘The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.
基金Project supported by the National Key Research and Development Program of China (Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China (Grant No.11834008)+3 种基金the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202210)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701)the Science and Technology Foundation of Guizhou Province,China (Grant No.ZK[2023]249)。
文摘Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.
基金the support of the National Science Foundation of China(12372120,12172075)the Liaoning Revitalization Talents Program(XLYC2007027)Fundamental Research Funds for the Central Universities(DUT21RC(3)067).
文摘Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.
文摘The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains.
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2022S02the National Natural Science Foundation of China under contract No.41976021.
文摘Negative Indian Ocean Dipole(nIOD)can exert great impacts on global climate and can also strongly influence the climate in China.Early nIOD is a major type of nIOD,which can induce more pronounced climate anomalies in summer than La Niña-related nIOD.However,the characteristics and triggering mechanisms of early nIOD are unclear.Our results based on reanalysis datasets indicate that the early nIOD and La Niña-related nIOD are the two major types of nIOD,and the former accounts for over one third of all the nIOD events in the past six decades.These two types of nIODs are similar in their intensities,but are different in their spatial patterns and seasonal cycles.The early nIOD,which develops in spring and peaks in summer,is one season earlier than the La Niña-related nIOD.The spatial pattern of the wind anomaly associated with early nIOD exhibits a winter monsoon-like pattern,with strong westerly anomalies in the equatorial Indian Ocean and eastly anomalies in the northern Indian Ocean.Opposite to the triggering mechanism of early positve IOD,the early nIOD is induced by delayed Indian summer monsoon onset.The results of this study are helpful for improving the prediction skill of IOD and its climate impacts.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金supported by National Natural Science Foundations of China(Nos.51977023 and 52077026)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)。
文摘In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.
基金the financial support from the National Natural Science Foundation of China(12171405 and 11661074)the Program for New Century Excellent Talents in Fujian Province University+2 种基金the financial support from the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)Collaborative Innovation Center of Statistical Data Engineering Technology&ApplicationDigital+Discipline Construction Project(SZJ2022B004)。
文摘Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.
基金supported by National Science Foundation of China(42102059 and 92055202)the China Geological Survey(DD20221817 and DD20190057)+1 种基金the basic scientific research funding in CAGS(J2204)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0702).
文摘Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.