In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult....In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。展开更多
Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poi...Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.展开更多
Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant...Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.展开更多
Deep mining has been paid much more attention because of the depletion of shallow mining resources.Traditional bolts could be invalid to accommodate large displacement and deformation in geomaterials.Consequently, alt...Deep mining has been paid much more attention because of the depletion of shallow mining resources.Traditional bolts could be invalid to accommodate large displacement and deformation in geomaterials.Consequently, alternative support and reinforcement bolts need to be studied and their constitutive models also need to be developed to help understanding for the complex stress-strain responses of rock masses under loadings. The effect of Negative Poisson's Ratio(NPR) that is attributed to the swelling phenomenon along the lateral direction may appear in metal materials under tensional loadings. Thence NPR materials often have an advantage over NPR ones in mechanical behavior such as impact resistance, antishearing, and energy absorbed. From the characteristics of NPR materials, a series of bolt and cable supports with the effect of NPR and constant-resistance have been recently developed. We here firstly introduce the structural features of NPR support. Then the constitutive model of NPR support is presented and its corresponding equation of energy equilibrium. Its basic principle interacted on rock masses is further discussed. Finally, NPR cables are employed to support the slope of an open-pit mine. The applications show that NPR cables can ease failure within the slope and play an important role in predicting and providing early warning of slope failure, together with a monitoring system of slope stability.展开更多
With the gradual decrease and exhaustion of shallow mineral resources,underground mining has progressed to greater depths.Here,the geological environment is significantly more complex and nonlinear,and large deformati...With the gradual decrease and exhaustion of shallow mineral resources,underground mining has progressed to greater depths.Here,the geological environment is significantly more complex and nonlinear,and large deformations of rock masses have great potential to occur.Many geotechnical engineering disasters have occurred even while using Poisson’s ratio(PR)anchor cable supports.To efficiently deal with these issues,a new support material called negative Poisson’s ratio(NPR)anchor cable is proposed;this material can withstand large deformations and provide high constant resistance.In this study,the support characteristics of macro-NPR anchor cable under blasting impact were mainly studied.The support effects of PR anchor cable and macro-NPR anchor cable were compared and analyzed with the help of field experiments and numerical simulations.The results indicate that field experiments and discontinuous deformation analysis accurately reflect the failure state of the selected roadway,as well as the tension and deformation of the anchor cables.The road-way supported by PR anchor cables cannot resist rock bursts under ordinary circumstances.However,the NPR anchor cable-supported roadway resisted a rock burst caused by the impact equivalent to a mine earthquake magnitude above 3;it meets the requirements of roadway stability.展开更多
With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials ...With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.展开更多
Auxetic structures are a special class of structural components that exhibit a negative Poisson’s ratio(NPR)because of their constituent materials,internal microstructure,or structural geometry.To realize such struct...Auxetic structures are a special class of structural components that exhibit a negative Poisson’s ratio(NPR)because of their constituent materials,internal microstructure,or structural geometry.To realize such structures,specialized manufacturing processes are required to achieve a dimensional accuracy,reduction of material wastage,and a quicker fabrication.Hence,additive manufacturing(AM)techniques play a pivotal role in this context.AM is a layer-wise manufacturing process and builds the structure as per the designed geometry with appreciable precision and accuracy.Hence,it is extremely beneficial to fabricate auxetic structures using AM,which is otherwise a tedious and expensive task.In this study,a detailed discussion of the various AM techniques used in the fabrication of auxetic structures is presented.The advancements and advantages put forward by the AM domain have offered a plethora of opportunities for the fabrication and development of unconventional structures.Therefore,the authors have attempted to provide a meaningful encapsulation and a detailed discussion of the most recent of such advancements pertaining to auxetic structures.The article opens with a brief history of the growth of auxetic materials and later auxetic structures.Subsequently,discussions centering on the different AM techniques employed for the realization of auxetic structures are conducted.The basic principle,advantages,and disadvantages of these processes are discussed to provide an in-depth understanding of the current level of research.Furthermore,the performance of some of the prominent auxetic structures realized through these methods is discussed to compare their benefits and shortcomings.In addition,the influences of geometric and process parameters on such structures are evaluated through a comprehensive review to assess their feasibility for the later-mentioned applications.Finally,valuable insights into the applications,limitations,and prospects of AM for auxetic structures are provided to enable the readers to gauge the vitality of such manufacturing as a production method.展开更多
基金supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)the Foundation for the Opening of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2129)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Second Tibetan Plateau Scientific Expedition and Research Grant 2019QZKK0708。
文摘Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.
基金supported by the Foundation for the Opening of State Key Laboratory for GeoMechanics&Deep Underground Engineering(Grant No.SKLGDUEK2129).
文摘Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.
基金Financial support for this work was provided by the National Natural Science Foundation of China (No.41502323)
文摘Deep mining has been paid much more attention because of the depletion of shallow mining resources.Traditional bolts could be invalid to accommodate large displacement and deformation in geomaterials.Consequently, alternative support and reinforcement bolts need to be studied and their constitutive models also need to be developed to help understanding for the complex stress-strain responses of rock masses under loadings. The effect of Negative Poisson's Ratio(NPR) that is attributed to the swelling phenomenon along the lateral direction may appear in metal materials under tensional loadings. Thence NPR materials often have an advantage over NPR ones in mechanical behavior such as impact resistance, antishearing, and energy absorbed. From the characteristics of NPR materials, a series of bolt and cable supports with the effect of NPR and constant-resistance have been recently developed. We here firstly introduce the structural features of NPR support. Then the constitutive model of NPR support is presented and its corresponding equation of energy equilibrium. Its basic principle interacted on rock masses is further discussed. Finally, NPR cables are employed to support the slope of an open-pit mine. The applications show that NPR cables can ease failure within the slope and play an important role in predicting and providing early warning of slope failure, together with a monitoring system of slope stability.
基金the National Key Research and Development Plan Project(Grant No.2016YFC00600901)Zhejiang Province Key Research and Development Plan Active Design Project(Grant No.2019C03104).
文摘With the gradual decrease and exhaustion of shallow mineral resources,underground mining has progressed to greater depths.Here,the geological environment is significantly more complex and nonlinear,and large deformations of rock masses have great potential to occur.Many geotechnical engineering disasters have occurred even while using Poisson’s ratio(PR)anchor cable supports.To efficiently deal with these issues,a new support material called negative Poisson’s ratio(NPR)anchor cable is proposed;this material can withstand large deformations and provide high constant resistance.In this study,the support characteristics of macro-NPR anchor cable under blasting impact were mainly studied.The support effects of PR anchor cable and macro-NPR anchor cable were compared and analyzed with the help of field experiments and numerical simulations.The results indicate that field experiments and discontinuous deformation analysis accurately reflect the failure state of the selected roadway,as well as the tension and deformation of the anchor cables.The road-way supported by PR anchor cables cannot resist rock bursts under ordinary circumstances.However,the NPR anchor cable-supported roadway resisted a rock burst caused by the impact equivalent to a mine earthquake magnitude above 3;it meets the requirements of roadway stability.
基金supported by the National Natural Science Foundation of China(Grant No.41941018).
文摘With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.
文摘Auxetic structures are a special class of structural components that exhibit a negative Poisson’s ratio(NPR)because of their constituent materials,internal microstructure,or structural geometry.To realize such structures,specialized manufacturing processes are required to achieve a dimensional accuracy,reduction of material wastage,and a quicker fabrication.Hence,additive manufacturing(AM)techniques play a pivotal role in this context.AM is a layer-wise manufacturing process and builds the structure as per the designed geometry with appreciable precision and accuracy.Hence,it is extremely beneficial to fabricate auxetic structures using AM,which is otherwise a tedious and expensive task.In this study,a detailed discussion of the various AM techniques used in the fabrication of auxetic structures is presented.The advancements and advantages put forward by the AM domain have offered a plethora of opportunities for the fabrication and development of unconventional structures.Therefore,the authors have attempted to provide a meaningful encapsulation and a detailed discussion of the most recent of such advancements pertaining to auxetic structures.The article opens with a brief history of the growth of auxetic materials and later auxetic structures.Subsequently,discussions centering on the different AM techniques employed for the realization of auxetic structures are conducted.The basic principle,advantages,and disadvantages of these processes are discussed to provide an in-depth understanding of the current level of research.Furthermore,the performance of some of the prominent auxetic structures realized through these methods is discussed to compare their benefits and shortcomings.In addition,the influences of geometric and process parameters on such structures are evaluated through a comprehensive review to assess their feasibility for the later-mentioned applications.Finally,valuable insights into the applications,limitations,and prospects of AM for auxetic structures are provided to enable the readers to gauge the vitality of such manufacturing as a production method.