Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b...Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.展开更多
Based on Mindlin plate models and Kirchhoff plate models,this study was concerned with the wave propagation characteristics in thick conventional and auxetic cellular structures,with the objective to clarify the effec...Based on Mindlin plate models and Kirchhoff plate models,this study was concerned with the wave propagation characteristics in thick conventional and auxetic cellular structures,with the objective to clarify the effects of negative Poisson's ratio,shear factor and orthotropic mechanical properties on the dynamic behaviors of thick plates.Numerical results revealed that the predictions using variable shear factor in Mindlin plate models resulted in high wave frequencies,which were more significant for plates with negative values of Poisson's ratio.The present study can be useful for the design of critical applications by varying the values of Poisson's ratio.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51605219&51375007)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20160791&SBK2015022352)+1 种基金the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-201608,SKLMTKFKT-2014010&SKLMT-KFKT-201507)the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)
文摘Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.
基金Project supported by the National Natural Science Foundation of China(No.11172239)the 111 project(No.B07050)the Doctoral Program Foundation of Education Ministry of China(20126102110023)
文摘Based on Mindlin plate models and Kirchhoff plate models,this study was concerned with the wave propagation characteristics in thick conventional and auxetic cellular structures,with the objective to clarify the effects of negative Poisson's ratio,shear factor and orthotropic mechanical properties on the dynamic behaviors of thick plates.Numerical results revealed that the predictions using variable shear factor in Mindlin plate models resulted in high wave frequencies,which were more significant for plates with negative values of Poisson's ratio.The present study can be useful for the design of critical applications by varying the values of Poisson's ratio.