By the negative eigenvalues of partial transposition of density matrix, this paper investigates the time evolution of entanglement of the two entangled atoms in the system of two atoms interacting with SchrSdinger cat...By the negative eigenvalues of partial transposition of density matrix, this paper investigates the time evolution of entanglement of the two entangled atoms in the system of two atoms interacting with SchrSdinger cat state. The result shows that the two atoms are always in the entanglement state, and the degree of entanglement between the two atoms exhibits ordinary collapses and revivals at 0.2 degree of entanglement, when the light field is large enough. On the other hand, the reinforcement of three different light fields on the degree of entanglement between two atoms is not evident.展开更多
We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. ...We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. Therefore, the scheme is insensitive to the atomic spontaneous emission and cavity decay. The scheme may be generalized to the deterministic generation of entangled coherent states for two atomic samples. In contrast with the previously proposed schemes of [Commun. Theor. Phys. 40 (2003) 103 and Chin. our scheme is greatly shortened and thus the deeoherence can Phys. B 18 (2009) 1045], the required interaction time in be effectively suppressed.展开更多
By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, Schrodinger cat states and entan...By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, Schrodinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schrodinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.展开更多
基金Project supported by the Higher Education of Hubei Province of China (Grant No Z200522001) and the Natural Science Foundation of Hubei Province of China (Grant No 2006ABA055).
文摘By the negative eigenvalues of partial transposition of density matrix, this paper investigates the time evolution of entanglement of the two entangled atoms in the system of two atoms interacting with SchrSdinger cat state. The result shows that the two atoms are always in the entanglement state, and the degree of entanglement between the two atoms exhibits ordinary collapses and revivals at 0.2 degree of entanglement, when the light field is large enough. On the other hand, the reinforcement of three different light fields on the degree of entanglement between two atoms is not evident.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60878059 and 10947147the Funds of Educational Committee of Fujian Province under Grant Nos. JA09014 and JB08066the Funds from Fujian Normal University under Grant No. 2008100220
文摘We propose an alternative scheme for generation of atomic Schrodinger cat states in an optical cavity. In the scheme the atoms are always populated in the two ground states and the cavity remains in the vacuum state. Therefore, the scheme is insensitive to the atomic spontaneous emission and cavity decay. The scheme may be generalized to the deterministic generation of entangled coherent states for two atomic samples. In contrast with the previously proposed schemes of [Commun. Theor. Phys. 40 (2003) 103 and Chin. our scheme is greatly shortened and thus the deeoherence can Phys. B 18 (2009) 1045], the required interaction time in be effectively suppressed.
基金Project supported by the National Science Foundation of China(Grant No10774088)the Key Program of National Science Foundation of China(Grant No10534030)the Funds from Qufu Normal University,China(Grant No XJ0621)
文摘By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, Schrodinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schrodinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.