The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics ...The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.展开更多
The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident e...The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.展开更多
A model for the negative phase of ionospheric storms in middle latitudes is presented. It is assumed that there will be molecule enriched air in the thermosphere above the auroral oval during the period of the main ph...A model for the negative phase of ionospheric storms in middle latitudes is presented. It is assumed that there will be molecule enriched air in the thermosphere above the auroral oval during the period of the main phase of a magnetic storm. The molecule enriched air is carried to the middle latitudes by thermospheric neutral wind, and at the same time it diffuses away. When the molecule enriched air arrives at the F2 layer above a station, the electron loss rate in the F2 layer increases, the electron density decreases and then the negative phase at the station begins. We have calculated the variations of the fo F2 following magnetic storms for Manzhouli (29.5°N, 117.5°E), Freiburg (48°N, 07°E) and Billerica (43°N, 71°W) respectively. The results agree very well with typical events observed at the three stations and can be used to explain some average features of negative phase ionospheric storms in middle latitudes.展开更多
A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and ...A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo3012 adopts monoclinic structure with space group P21/a (No. 14) from 298 to 358K and transforms to orthorhombic with space group Pnma (No. 62) above 363K. The linear CTE obtained from the results of XRD refinement is -2.80 × 10-6 K-1 from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is -4.7× 10-6 K-1 from 373 to 773K approximatively.展开更多
Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop p...Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop phase synchronization(OLS)method of positive and negative sequences for an asymmetric grid based on the moving average filter(MAF),which does not need to separate the positive and negative sequence fundamental components of grid voltage.As a benefit,there is no double-frequency oscillation in the estimated phases at offnominal frequencies since the positive and negative sequence phases are obtained simultaneously.The proposed method not only has the inherent advantages of OLS,but also further improves the dynamic response since the window length of MAF is only 1/6 of the fundamental period.The effectiveness of the proposed OLS is verified by experimental results.展开更多
The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system asp...The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.展开更多
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407000 and2016YFC1401500the National Natural Science Foundation of China under contract Nos 41806045 and 51579090。
文摘The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.
基金Supported by the National Natural Science Foundation of China!( 6 9870 0 9)by the Science Foundation of Shanghai Municipal
文摘The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.
文摘A model for the negative phase of ionospheric storms in middle latitudes is presented. It is assumed that there will be molecule enriched air in the thermosphere above the auroral oval during the period of the main phase of a magnetic storm. The molecule enriched air is carried to the middle latitudes by thermospheric neutral wind, and at the same time it diffuses away. When the molecule enriched air arrives at the F2 layer above a station, the electron loss rate in the F2 layer increases, the electron density decreases and then the negative phase at the station begins. We have calculated the variations of the fo F2 following magnetic storms for Manzhouli (29.5°N, 117.5°E), Freiburg (48°N, 07°E) and Billerica (43°N, 71°W) respectively. The results agree very well with typical events observed at the three stations and can be used to explain some average features of negative phase ionospheric storms in middle latitudes.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574276,51503185 and 51302249the Doctoral Fund of the Ministry of Education of China under Grant No 20114101110003
文摘A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo3012 adopts monoclinic structure with space group P21/a (No. 14) from 298 to 358K and transforms to orthorhombic with space group Pnma (No. 62) above 363K. The linear CTE obtained from the results of XRD refinement is -2.80 × 10-6 K-1 from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is -4.7× 10-6 K-1 from 373 to 773K approximatively.
文摘Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop phase synchronization(OLS)method of positive and negative sequences for an asymmetric grid based on the moving average filter(MAF),which does not need to separate the positive and negative sequence fundamental components of grid voltage.As a benefit,there is no double-frequency oscillation in the estimated phases at offnominal frequencies since the positive and negative sequence phases are obtained simultaneously.The proposed method not only has the inherent advantages of OLS,but also further improves the dynamic response since the window length of MAF is only 1/6 of the fundamental period.The effectiveness of the proposed OLS is verified by experimental results.
文摘The paper describes the application of a static var compensator to improve the electrical system of the ACN (Cravo Norte Association) oil field in Colombia. The paper summarizes the application, including system aspects that require special control functions in the SVC (static var compensator) regulator. Several important benefits for the system operation are demonstrated, such as increased power transmission import over an existing 230 kV network, dynamic bus voltage stabilization for various load conditions, including system outages and load rejection, and reduction of variable speed drive shutdowns by up to 95%. Some relevant design features of the SVC are treated, as well.