期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio 被引量:2
1
作者 Qiao ZHANG Yuxin SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1457-1486,共30页
This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relatio... This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load. 展开更多
关键词 negative poisson's ratio(NPR) negative thermal expansion(NTE) sand-wich plate VIBratioN BUCKLING
下载PDF
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection 被引量:2
2
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
Switchable hidden spin polarization and negative Poisson's ratio in two-dimensional antiferroelectric wurtzite crystals
3
作者 Zhuang Ma Jingwen Jiang +8 位作者 Gui Wang Peng Zhang Yiling Sun Zhengfang Qian Jiaxin Zheng Wen Xiong Fei Wang Xiuwen Zhang Pu Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期72-80,共9页
Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by... Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by a certain degree in the 2D plane.Such 2D functional materials are realized by stacking the exfoliated wurtzite(wz)monolayers with“self-healable”nature,which host strongly coupled ferroelasticity/antiferroelectricity and benign stability.The AFE candidates,i.e.,Zn X and Cd X(X=S,Se,Te),are all semiconductors with direct bandgap atΓpoint,which harbors switchable antiferroelectricity and ferroelasticity with low transition barriers,hidden spin polarization,as well as giant in-plane negative Poisson's ratio(NPR),enabling the co-tunability of hidden spin characteristics and auxetic magnitudes via AFE switching.The 2D AFE wz crystals provide a platform to probe the interplay of 2D antiferroelectricity,ferroelasticity,NPR,and spin effects,shedding new light on the rich physics and device design in wz semiconductors. 展开更多
关键词 wurtzite crystal MULTIFERROICS hidden spin polarization negative poisson's ratio
下载PDF
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
4
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 negative poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
Topological study about failure behavior and energy absorption of honeycomb structures under various strain rates 被引量:1
5
作者 Yu-chen Wei Meng-jie Tian +4 位作者 Chun-yang Huang Shao-wu Wang Xing Li Qian-ran Hu Meng-qi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期214-227,共14页
High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-abso... High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments. 展开更多
关键词 Honeycomb structures Impact loading negative poisson's ratio Titanium alloy Dynamic response
下载PDF
Upper crustal Poisson's ratio and coda-wave attenuation beneath Eastern Anatolia
6
作者 Ufuk Aydin Sakir Sahin Mohamed K.Salah 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期335-347,共13页
The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using ... The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using 2621 vertical component seismograms generated by 987 earthquakes recorded by 13 seismic stations in Eastern Anatolia,and creat a 2-D seismic tomographic Qc model for the region.The obtained model provides significant information for exploring the boundaries of adjacent tectonic units within the upper crust and interpreting their dynamic characteristics.The 2-D Qc model and the other parameters are consistent with the seismotectonic features of Eastern Anatolia.Highly heterogeneous Qc values are observed in the study area dividing it into north-south directed bands of low and high attenuation.The highestηvalues were obtained beneath the northwestern and eastern parts of the study region.Clear,high and lowυvalues are obtained in the western and eastern parts of the study area,respectively.The spatial variations in the measured parameters are consistent with many geophysical observations including low Pn velocities,efficient Sn blockage,high heat flow,and widespread volcanism.Different upper crustal thicknesses and inhomogeneous stress distribution along the East and North Anatolian Fault Zones may also contribute to the observed heterogeneities. 展开更多
关键词 Coda-Q(Qc) Eastern Anatolia poisson's ratio(υ) SEISMOTECTONICS upper crustal structure
下载PDF
Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites
7
作者 Yuan Chen Lin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期84-93,共10页
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun... In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents. 展开更多
关键词 3D printing Continuous carbon fibre MODELLING Energy absorption negative poisson's ratio
下载PDF
Mechanical behavior of 2G NPR bolt anchored rock samples under static disturbance loading
8
作者 WANG Jiong JIANG Jian +4 位作者 WANG Siyu CHANG Yiwen LIU Peng HE Manchao CHENG Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2494-2516,共23页
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar... The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt. 展开更多
关键词 Anchored rock samples Static disturbance load Acoustic emission characteristics Digital speckle negative poisson's ratio
下载PDF
A new design of 3D-printed orthopedic bone plates with auxeticstructures to mitigate stress shielding and improve intra-operative bending 被引量:6
9
作者 Sanjairaj Vijayavenkataraman Akhil Gopinath Wen F.Lu 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第2期98-108,共11页
Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate... Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate–bone contact affecting the blood circulation.However,it is only made of two materials,either stainless steel(AISI 316L)or titanium(Ti–6Al–4V).There are two main limitations of metallic bone implants,namely stress shielding and the problem of malocclusion caused by the displacement of the fracture site during healing.To overcome the two problems,a new bone plate design with the incorporation of auxetic structures is proposed in this work.This study aims to use auxetic structure section in the bone plate that would decrease the stiffness of the region,thereby mitigating the stress-shielding effect and at the same time act as a deformable section to enable intra-operative bending for effective alignment while having enough bending strength and stiffness.Two different auxetic structures namely re-entrant honeycomb and missing rib structures were considered.The auxetic structure incorporated bone plates were designed,finite element analysis was done,fabricated using direct metal laser sintering technique,and tested.The results indicate that the re-entrant honeycomb structure incorporated bone plates serve as an effective bone design compared to the conventional bone plate design,in terms of stress shielding and intra-operative bending while offering similar mechanical and bending strength. 展开更多
关键词 Bone PLATES negative poisson's ratio structures 3D PRINTING Additive manufacturing Stress SHIELDING
下载PDF
Using of an Auxetic Structure as Reinforcement of a Bending Reinforced Concrete Beam
10
作者 Tarik Baran 《Journal of Mechanics Engineering and Automation》 2019年第1期1-16,共16页
Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limite... Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limited extent.In this study,a re-entrant medium-size auxetic structure is employed as reinforcement of a reinforced concrete beam.The beam is subjected to static and dynamic loading conditions and then investigated by means of maximum vertical displacements of the beam.Besides,normal stresses and shear stresses of the concrete are also assessed.To interpret the performance of the auxetic reinforcement,obtained results are compared with the results of another beam which has non-auxetic reinforcement.The results show that these structures behave with bending compatibility as expected and due to the negative Poisson’s ratio,they led to shear strength increase.Auxetic structures can be employed as reinforcement in a beam.Besides,they can be employed without concrete to increase the shear strength in the case of high shear and impact strength if it is needed. 展开更多
关键词 AUXETIC RE-ENTRANT cell structure negative Poisson’s ratio AUXETIC REINFORCEMENT INDENTATION resistance
下载PDF
4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure:A preliminary study 被引量:5
11
作者 LIN Cheng ZHANG LiJin +2 位作者 LIU YanJu LIU LiWu LENG JinSong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第4期578-588,共11页
Four-dimensional(4D)printing,integrates transformation information into three-dimensional(3D)-printed structures,which means that 3D-printed structures are able to change their shapes,properties,or functionalities ove... Four-dimensional(4D)printing,integrates transformation information into three-dimensional(3D)-printed structures,which means that 3D-printed structures are able to change their shapes,properties,or functionalities over time.Here,two types of shape memory personalized vascular stents with negative Poisson’s ratio structure are developed via 4D printing.The genetic algorithm is used to optimize the structure.Axial compression tests,radial compression tests and three-point bending tests are carried out to study the mechanical properties of the stents.In addition,fluid-structure interaction and stress distribution during the shape recovery process are investigated based on finite element method.The shape memory behaviors of the stents are excellent and in vitro feasibility tests demonstrate that the stents can expand the simulated narrow blood vessel rapidly.Therefore,4D printed shape memory stents with negative Poisson’s ratio structure are highly promising for the treatment of vascular stenosis. 展开更多
关键词 shape memory polymer 4D PRINTING BIODEGRADABLE vascular STENTS finite element analysis negative poisson's ratio
原文传递
Mechanical enhancement and weakening in Mo_(6)S_(6)nanowire by twisting
12
作者 徐克 林演文 +4 位作者 石桥 付越群 杨毅 张志森 吴建洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期534-542,共9页
The torsional,bending and tensile mechanical properties of Mo_(6)S_(6)nanowire are examined by molecular dynamics(MD)simulations with a first-principles-based reactive force field(ReaxFF).It is found that Mo_(6)S_(6)n... The torsional,bending and tensile mechanical properties of Mo_(6)S_(6)nanowire are examined by molecular dynamics(MD)simulations with a first-principles-based reactive force field(ReaxFF).It is found that Mo_(6)S_(6)nanowire shows unique mechanical properties such as high torsional and bending flexibility,high Young's modulus and strength,and negative Poisson's ratio.The Mo_(6)S_(6)nanowire can be strengthened or weakened via twisting,depending on the twist angle.The Mo_(6)S_(6)nanowire with a slight twist angle shows brittle failure,whereas it with a large twist angle exhibits ductile failure and necking behavior.Twisted Mo_(6)S_(6)nanowires show a crossover in the negative Poisson's ratio at critical strains,that is,Poisson's ratio first decreases but then increases,with a minimum value down to around-0.8 at the strain of 0.01 as the twist angle is 21.0°/nm.The negative Poisson's ratio and the crossover are explained by the bond transform that makes zero angles to the wire cross-section. 展开更多
关键词 Mo_(6)S_(6)nanowire mechanical properties TWISTING negative poisson's ratio
下载PDF
Multi-objective robust design optimization of a novel negative Poisson's ratio bumper system
13
作者 ZHOU Guan ZHAO WanZhong +2 位作者 MA ZhengDong WANG ChunYan LI YuFang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1103-1110,共8页
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b... Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method. 展开更多
关键词 negative Poisson's ratio structure bumper system multi-objective robust design optimization parameterized model crashworthiness
原文传递
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:9
14
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 DATA-DRIVEN BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
下载PDF
Modeling of deformation processes in rock massif in the vicinity of underground goafs considering the formation of discontinuity zones 被引量:1
15
作者 Michael Zhuravkov Shunying Ji Aleg Kanavalau 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第2期92-97,共6页
The construction of mechanical-mathematical model and numerical method for the deformation processes of rock massifs with goafs and underground structures is very complex and also important task in modern rock mechani... The construction of mechanical-mathematical model and numerical method for the deformation processes of rock massifs with goafs and underground structures is very complex and also important task in modern rock mechanics.In this study,the mechanical-mathematical model is developed for rock massif in vicinity of underground goafs considering the internal block-layered structure of the rock massif.A new constitutive model is introduced in this study to describe the negative Poisson’s ratio for the lock-layered structure.Two types of defining equations systems for studying the state of a rock massif taking into account the block-layered structure are described.Finally,several examples are given using the present mechanical-mathematical model. 展开更多
关键词 Block-layered structure Rock MASSIF STRESS-STRAIN state DESTRUCTION and limit criteria negative poisson's ratio
下载PDF
A novel wavy non-uniform ligament chiral stent with J-shaped stress-strain behavior to mimic the native trachea 被引量:2
16
作者 Jiapeng Liu Xinhua Yao +4 位作者 Zhenwei Wang Jian Ye Congcong Luan Jianzhong Fu Yong He 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第4期851-866,共16页
Tracheal stents are an important form of treatment for benign or malignant central airway obstruction.However,the mechanical behavior of current tracheal stents is significantly different from that of the native trach... Tracheal stents are an important form of treatment for benign or malignant central airway obstruction.However,the mechanical behavior of current tracheal stents is significantly different from that of the native trachea,which leads to a variety of serious complications.In this study,inspired by the structure of the native trachea,a wavy non-uniform ligament chiral tracheal stent is proposed,in which J-shaped stress-strain behavior and negative Poisson's ratio response are achieved by replacing the tangential ligament of tetrachiral and anti-tetrachiral hybrid structure with a wavy non-uniform ligament.Through the combination of theoretical analysis,finite element analysis and experimental tests,a wide range of desired J-shaped stress-strain curves are explored to mimic the native porcine trachea by tailoring the stent geometry.Besides,the negative Poisson’s ratio and auxetic diameter curves versus axial strain of the stent are also studied in detail,thus contributing to the enhancement of cross-section ventilation and reducing the migration of the stent.This novel tracheal stent with a unique microstructure shows a potential to perfectly match the physiological activities of the native trachea and thereby reduce potential complications. 展开更多
关键词 Tracheobronchial stenosis Tracheal stent Chiral auxetic structure Wavy non-uniform ligament J-shaped stress-strain behavior negative Poisson’s ratio
下载PDF
In-Plane Dynamic Crushing Behaviors of a Vertex-Based Hierarchical Auxetic Honeycomb
17
作者 Yichen Zan Xiuhui Hou Zichen Deng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期53-62,共10页
Auxetic metamaterials,which exhibit the negative Poisson’s ratio(NPR)effect,have found wide applications in many engineering fields.However,their high porosity inevitably weakens their bearing capacity and impact res... Auxetic metamaterials,which exhibit the negative Poisson’s ratio(NPR)effect,have found wide applications in many engineering fields.However,their high porosity inevitably weakens their bearing capacity and impact resistance.To improve the energy absorption efficiency of auxetic honeycombs,a novel vertex-based hierarchical star-shaped honeycomb(VSH)is designed by replacing each vertex in the classical star-shaped honeycomb(SSH)with a newly added self-similar sub-cell.An analytical model is built to investigate the Young’s modulus of VSH,which shows good agreement with experimental results and numerical simulations.The in-plane dynamic crushing behaviors of VSH at three different crushing velocities are investigated,and empirical formulas for the densification strain and plateau stress are deduced.Numerical results reveal more stable deformation modes for VSH,attributed to the addition of self-similar star-shaped sub-cells.Moreover,compared with SSH under the same relative densities,VSH exhibits better specific energy absorption and higher plateau stresses.Therefore,VSH is verified to be a better candidate for energy absorption while maintaining the auxetic effect.This study is expected to provide a new design strategy for auxetic honeycombs. 展开更多
关键词 Vertex-based hierarchical star-shaped honeycomb Auxetic honeycomb Energy absorption Plateau stress negative poisson's ratio
原文传递
Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis 被引量:11
18
作者 XU Mingjie1, WANG Liangshu1, LIU Jianhua2, ZHONG Kai1, LI Hua1, HU Dezhao1 & XU Zhen1 1. Department of Earth Sciences, Nanjing University, Nanjing 210093, China 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第10期1043-1052,共10页
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs r... S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle. 展开更多
关键词 RECEIVER function Ailaoshan-Red River fault velocity structure poisson's ratio CRUST and UPPER mantle.
原文传递
Receiver function analysis for seismic structure of the crust and uppermost mantle in the Liupanshan area,China 被引量:10
19
作者 TONG WeiWei WANG LiangShu +7 位作者 MI Ning XU MingJie LI Hua YU DaYong LI Cheng LIU ShaoWen LIU Mian Eric SanDvol 《Science China Earth Sciences》 SCIE EI CAS 2007年第z2期227-233,共7页
A portable broadband seismic array was deployed from the northeast Tibetan Plateau to the southwest Ordos block,China.The seismic structure of the crust and uppermost mantle of the Liupanshan area is obtained using re... A portable broadband seismic array was deployed from the northeast Tibetan Plateau to the southwest Ordos block,China.The seismic structure of the crust and uppermost mantle of the Liupanshan area is obtained using receiver function analysis of teleseismic body waves.The crustal thickness and Poisson's ratios are estimated by stacking the weighted amplitudes of receiver functions.Our results reveal complex seismic phases in the Liupanshan area,implying intense deformation at the boundary between the Tibetan Plateau and the Ordos block.The average crustal thickness is 51.5 km in the northeast Tibetan Plateau,53.5 km in the Liupan Mountain and 50 km in the southwest Ordos block,resulting in a concave Moho beneath the Liupan Mountain.The Poisson's ratio of the Liupanshan area varies between 0.27-0.29,higher than the value of 0.25-0.26 to the east and west of the Liupan Mountain,suggesting partial melting in the lower crust.The variance in Poisson's ratio across the Liupan Mountain indicates notable changes in the crustal composition and mechanical properties,which may be formed by the northeastward flow of the Tibetan lower crust during the India-Eurasia collision. 展开更多
关键词 receiver function Liupan Mountain crustal structure poisson's ratio India-Eurasia collision
原文传递
Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures 被引量:11
20
作者 P R BUDARAPU Sudhir Sastry Y B R NATARAJAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期394-408,共15页
This paper is categorized into two parts. (1) A frame work to design the aircraft wing structure and (2) analysis ofa morphing airfoil with auxetic structure. The developed design frame work in the first part is u... This paper is categorized into two parts. (1) A frame work to design the aircraft wing structure and (2) analysis ofa morphing airfoil with auxetic structure. The developed design frame work in the first part is used to arrive at the sizes of the various components of an aircraft wing structure. The strength based design is adopted, where the design loads are extracted from the aerodynamic loads. The aerodynamic loads acting on a wing structure are converted to equivalent distributed loads, which are further converted point loads to arrive at the shear forces, bending and twisting moments along the wing span. Based on the estimated shear forces, bending and twisting moments, the strength based design is employed to estimate the sizes of various sections of a composite wing structure. A three dimensional numerical model of the composite wing structure has been developed and analyzed for the extreme load conditions. Glass fiber reinforced plastic material is used in the numerical analysis. The estimated natural frequencies are observed to be in the acceptable limits. Furthermore, the discussed design principles in the first part are extended to the design of a morphing airfoil with auxetic structure. The advantages of the morphing airfoil with auxetic structure are (i) larger displacement with limited straining of the components and (ii) unique deformation characteristics, which produce a theoretical in-plane Poisson's ratio of -1. Aluminum Alloy AL6061-T651 is considered in the design of all the structural elements. The compliance characteristics of the airfoil are investigated through a numerical model. The numerical results are observed to be in close agreement with the experimental results in the literature. 展开更多
关键词 wing design aerodynamic loads morphing airfoil auxetic structures negative Poisson's ratio
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部