Reverse transcription-polymerase chain reaction(RT-PCR)is an essential method for specific diagnosis of SARS-CoV-2 infection.Unfortunately,false negative test results are often reported.In this study,we attempted to d...Reverse transcription-polymerase chain reaction(RT-PCR)is an essential method for specific diagnosis of SARS-CoV-2 infection.Unfortunately,false negative test results are often reported.In this study,we attempted to determine the principal causes leading to false negative results of RT-PCR detection of SARS-CoV-2 RNAs in respiratory tract specimens.Multiple sputum and throat swab specimens from 161 confirmed COVID-19 patients were tested with a commercialfluorescent RT-PCR kit targeting the ORF1 ab and N regions of SARS-CoV-2 genome.The RNA level of a cellular housekeeping gene ribonuclease P/MRP subunit p30(RPP30)in these specimens was also assessed by RT-PCR.Data for a total of 1052 samples were retrospectively re-analyzed and a strong association between positive results in SARS-CoV-2 RNA tests and high level of RPP30 RNA in respiratory tract specimens was revealed.By using the ROC-AUC analysis,we identified Ct cutoff values for RPP30 RT-PCR which predicted false negative results for SARS-CoV-2 RT-PCR with high sensitivity(95.03%–95.26%)and specificity(83.72%–98.55%)for respective combination of specimen type and ampli-fication reaction.Using these Ct cutoff values,false negative results could be reliably identified.Therefore,the presence of cellular materials,likely infected host cells,are essential for correct SARS-CoV-2 RNA detection by RT-PCR in patient specimens.RPP30 could serve as an indicator for cellular content,or a surrogate indicator for specimen quality.In addition,our results demonstrated that false negativity accounted for a vast majority of contradicting results in SARS-CoV-2 RNA test by RT-PCR.展开更多
Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numero...Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numerous region-and nation-wide GLOF assessment studies have been published recently.These studies cover large areas and consider hundreds to thousands of lakes,prioritizing the hazard posed by them.Clearly,certain simplification is required for executing such studies,often resulting in neglecting qualitative characteristics which would need manual assignment.Different lake dam types(e.g.,bedrock-dammed,moraine-dammed)are often not distinguished,despite they control GLOF mechanism(dam overtopping/dam breach)and thus GLOF magnitude.In this study,we explore the potential of easily measurable quantitative characteristics and four ratios to approximate the lake dam type.Our dataset of 851 lakes of the Cordillera Blanca suggests that while variances and means of these characteristics of individual lake types differ significantly(F-test,t-test),value distribution of different geometrical properties can’t be used for the originally proposed purpose along the spectra.The only promising results are obtained for extreme values(selected bins)of the ratios.For instance,the low width to length ratio indicates likely morainedammed lake while the high value of ratio indicating round-shape of the lake indicates increased likelihood of bedrock-dammed lake.Overall,we report a negative result of our experiment since there are negligible differences of relative frequencies in most of the bins along the spectra.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant No.1608085MH162)。
文摘Reverse transcription-polymerase chain reaction(RT-PCR)is an essential method for specific diagnosis of SARS-CoV-2 infection.Unfortunately,false negative test results are often reported.In this study,we attempted to determine the principal causes leading to false negative results of RT-PCR detection of SARS-CoV-2 RNAs in respiratory tract specimens.Multiple sputum and throat swab specimens from 161 confirmed COVID-19 patients were tested with a commercialfluorescent RT-PCR kit targeting the ORF1 ab and N regions of SARS-CoV-2 genome.The RNA level of a cellular housekeeping gene ribonuclease P/MRP subunit p30(RPP30)in these specimens was also assessed by RT-PCR.Data for a total of 1052 samples were retrospectively re-analyzed and a strong association between positive results in SARS-CoV-2 RNA tests and high level of RPP30 RNA in respiratory tract specimens was revealed.By using the ROC-AUC analysis,we identified Ct cutoff values for RPP30 RT-PCR which predicted false negative results for SARS-CoV-2 RT-PCR with high sensitivity(95.03%–95.26%)and specificity(83.72%–98.55%)for respective combination of specimen type and ampli-fication reaction.Using these Ct cutoff values,false negative results could be reliably identified.Therefore,the presence of cellular materials,likely infected host cells,are essential for correct SARS-CoV-2 RNA detection by RT-PCR in patient specimens.RPP30 could serve as an indicator for cellular content,or a surrogate indicator for specimen quality.In addition,our results demonstrated that false negativity accounted for a vast majority of contradicting results in SARS-CoV-2 RNA test by RT-PCR.
基金the financial support by the University of Grazpartly supported by the Ministry of Education,Youth and Sports of the Czech Republic within the National Sustainability Programme I(NPU I),grant number LO1415Supporting perspective human resources Programme of the Czech Academy of Sciences,project"Dynamics and spatiotemporal patterns of glacial lakes evolution and their implications for risk management and adaptation in recently deglaciated areas"awarded to AE。
文摘Glacial lake outburst floods(GLOFs)represent one of the most serious hazard and risk in deglaciating high mountain regions worldwide and the need for GLOF hazard and risk assessment is apparent.As a consequence,numerous region-and nation-wide GLOF assessment studies have been published recently.These studies cover large areas and consider hundreds to thousands of lakes,prioritizing the hazard posed by them.Clearly,certain simplification is required for executing such studies,often resulting in neglecting qualitative characteristics which would need manual assignment.Different lake dam types(e.g.,bedrock-dammed,moraine-dammed)are often not distinguished,despite they control GLOF mechanism(dam overtopping/dam breach)and thus GLOF magnitude.In this study,we explore the potential of easily measurable quantitative characteristics and four ratios to approximate the lake dam type.Our dataset of 851 lakes of the Cordillera Blanca suggests that while variances and means of these characteristics of individual lake types differ significantly(F-test,t-test),value distribution of different geometrical properties can’t be used for the originally proposed purpose along the spectra.The only promising results are obtained for extreme values(selected bins)of the ratios.For instance,the low width to length ratio indicates likely morainedammed lake while the high value of ratio indicating round-shape of the lake indicates increased likelihood of bedrock-dammed lake.Overall,we report a negative result of our experiment since there are negligible differences of relative frequencies in most of the bins along the spectra.