The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupi...The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupied 11% of the system peak load in 1985 when the generator was in commercial operation. Since Taipower is an isolated system, at the N-2 conditions, those generators were reduced to 75% loading to protect the power system. By the way, to avoid damage of negative sequence current (NSC), the limits of the N3 power plant are stricter than those in the IEEE Standard. However, in 2010, the capacity ratio of each generator in the plant to the system peak load has been reduced to 3% only. To increase the economic benefit of those generators, it is required to reassess the operation limits of NSC. EMTP was used to calculate the levels of NSC from the out-linking transmission circuits. From the results of this study, the effects of NSC could be ignored when the four out-linking circuits are in N-0, N-1, and N-2 conditions. The generators can be operated in full loading under these conditions. The modifications to the NSC limits of the N3 power plant are also suggested.展开更多
Objective:To compare the efficacy of platinum-and non-platinum-based regimens as first-line treatment for advanced triple-negative breast cancer(TNBC)and analyze the relationship between their efficacy and BRCA gene s...Objective:To compare the efficacy of platinum-and non-platinum-based regimens as first-line treatment for advanced triple-negative breast cancer(TNBC)and analyze the relationship between their efficacy and BRCA gene status.Methods:Retrospectively analyze clinical data of 220 patients diagnosed pathologically with advanced TNBC and treated at the Department of Breast Oncology,Peking University Cancer Hospital from 2013 to 2018 and evaluate the efficacy of chemotherapy.A total of 114 patients had BRCA1/2 gene tested by next generation sequencing(NGS)using peripheral blood,and we analyzed the correlation between their efficacy and BRCA1/2 gene status.Results:Non-platinum-based chemotherapy(NPCT)was administered to 129 and platinum-based chemotherapy(PBCT)to 91 study patients.The clinical benefit rate(CBR)and median progression-free survival(PFS)were not statistically different between NPCT and PBCT groups.The median overall survival(OS)was 30.0 and 22.5 months for PBCT and NPCT group,respectively[P=0.090,hazard ratios(HR)=0.703].BRCA status was assessed in 114 patients,14 of whom had deleterious germline BRCA1/2(g BRCA)mutations(seven in each group).In PBCT group,the CBR was 85.7%and 35.1%for patients with and without deleterious g BRCA mutations,respectively(P=0.039).The median PFS were 14.9 and 5.3 months and median OS were 26.5 and 15.5 months for patients with and without deleterious g BRCA mutations,respectively(P=0.001,P=0.161,respectively).Patients in PBCT group had significantly greater rates of grade 3-4 anemia(5.5%vs.0%)and thrombocytopenia(8.8%vs.0%),whereas palmar-plantar erythrodysesthesia(12.4%vs.0%)and peripheral neuropathy(8.6%vs.1.1%)occurred more frequently in NPCT group.Conclusions:Platinum-based regimens are more effective in patients with deleterious g BRCA mutations,but no difference in patients without BRCA gene mutations,so non-platinum is an option in patients without BRCA gene mutations considering the toxicity and side effect.And we recommend that patients with advanced TNBC should have BRCA gene test.展开更多
Negative skin friction (NSF) is one of the important problems when designing a pile foundation. However, the influence of loading sequence on the dragload and downdrag for pile foundation is seldom studied. In this pa...Negative skin friction (NSF) is one of the important problems when designing a pile foundation. However, the influence of loading sequence on the dragload and downdrag for pile foundation is seldom studied. In this paper, a three-dimensional numerical model was established using FLAC3D. Compared with the results of model test, the established model could be used to study the NSF of pile foundation. The influencing factors were discussed including the length-diameter ratio of pile and the loading sequence of pile head load and surcharge. A case history was analyzed using FLAC3D. The calculated results are in good agreement with the measured results. It is concluded that the dragload and downdrag are remarkably influenced by the loading sequence of pile head load and surcharge. The dragload and downdrag reach the maximum values under the condition of surcharge after pile head load.展开更多
Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly...Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly introduces a 2D Time-Stepping multi-slice finite element method(2D T-S multi-slice FEM)which is used for calculating the magnetic field distribution in induction motors under different sag events.Then the paper deduces the transient analytical expression of stator inrush current based on the classical theory of AC motors and presents a separation method for the positive,negative and zero sequence values based on instantaneous currents.With this method,the paper studies the influences of voltage sag amplitude,phase-angle jump and initial phase angle on the stator positive-and negative-sequence peak currents of 5.5 kW and 55 kW induction motors.This paper further proposes a motor protection method under voltage sag condition with the stator negative-sequence peak currents as the protection threshold,so that the protection false trip can be avoided effectively.Finally,the calculation and analysis results are validated by the comparison of calculated and measured stator peak value of the 5.5 kW induction motor.展开更多
this study provided the strong evidence that L2 learner's development patterns in syntactic structure is very similar to the pattern of L1 learners.L2 and L1 learner pass the similar gradual route to get the TL ne...this study provided the strong evidence that L2 learner's development patterns in syntactic structure is very similar to the pattern of L1 learners.L2 and L1 learner pass the similar gradual route to get the TL negative structure.But L2 learners' acquisitional sequences are not completely rigid.Individual learners may be interfered by other social or psychological factors en route and they may take longer than two years and some never travel the whole distance.展开更多
Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop p...Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop phase synchronization(OLS)method of positive and negative sequences for an asymmetric grid based on the moving average filter(MAF),which does not need to separate the positive and negative sequence fundamental components of grid voltage.As a benefit,there is no double-frequency oscillation in the estimated phases at offnominal frequencies since the positive and negative sequence phases are obtained simultaneously.The proposed method not only has the inherent advantages of OLS,but also further improves the dynamic response since the window length of MAF is only 1/6 of the fundamental period.The effectiveness of the proposed OLS is verified by experimental results.展开更多
Due to the excellent dynamic performance,the Finite Control Set Model Predictive Control has been widely used in various types of converters.However,when Finite Control Set Model Predictive Control is adopted,the swit...Due to the excellent dynamic performance,the Finite Control Set Model Predictive Control has been widely used in various types of converters.However,when Finite Control Set Model Predictive Control is adopted,the switching frequency of converters varies significantly with system operating conditions.Consequently,constant-frequency predictive control strategy has been proposed.Two active voltage vectors and a zero voltage vector are selected within each sampling period.The action time sequence is then calculated.Due to the unsymmetrical distribution of current variation rates around zero,the calculated value of the voltage-vector action time will turn up negative.According to common sense,the voltage-vector action time is greater than or equal to zero.The action time is normally forced to zero whenever a negative value is predicted,resulting in the control failure and performance deterioration.To solve this problem,this paper proposes modified strategy.The modified strategy examines the action time calculated out.When negative action time comes out,the modified strategy reselects the active voltage vector accordingly,instead of forcing the action time to be zero.Optimized action time sequence is further determined by minimizing the cost function.The effectiveness of the modified strategy is clearly verified by experimental tests,and analytical remarks are all founded in practical results.展开更多
An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change...An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.展开更多
The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the...The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.展开更多
Acute and chronic hepatitis B virus(HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammatio...Acute and chronic hepatitis B virus(HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellularcarcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.展开更多
In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due t...In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.展开更多
In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with...In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with common heavy-tailed distribution function F and finite mean μ ∈R^+, {N(n); n ≥0} be a sequence of negative binomial distributed random variables with a parameter p C (0, 1), n ≥ 0, let {M(n); n ≥ 0} be a Poisson process with intensity λ 〉 0. Suppose {N(n); n ≥ 0}, {Xn; n≥1} and {M(n); n ≥ 0} are mutually independent. Write S(n) =N(n)∑i=1 Xi-cM(n).Under the assumption F ∈ C, we prove some large deviation results. These results can be applied to certain problems in insurance and finance.展开更多
When private electric vehicles(EVs),which will be the main part of the EVs’cluster in the future,are plugged in power system by single phase power line,can result to three-phase unbalance problem of distribution netw...When private electric vehicles(EVs),which will be the main part of the EVs’cluster in the future,are plugged in power system by single phase power line,can result to three-phase unbalance problem of distribution network.In this work,a phased-controlled coordinated charging method was put forward to solve this problem.Firstly,the impacts of charging load to distribution network was analyzed based on the equivalent circuit;and then an architecture of the control method and its corresponding optimal control model were introduced.The optimal model is a multi-objective optimization model,which includes minimizing load variance of each phase and minimizing the power asymmetrical degree of three-phase load;lastly,three scenarios considering balance and unbalance cases were envisioned to verify the reasonableness of this control method based on IEEE-37 distribution network.Results show that the phased-controlled coordinated charging method can minimize the load variance as well as the negative sequence current.展开更多
This paper presents a new negative judgment matrix that combines the advantages of the reciprocal judgment matrix and the fuzzy complementary judgment matrix, and then puts forth the properties of this new matrix. In ...This paper presents a new negative judgment matrix that combines the advantages of the reciprocal judgment matrix and the fuzzy complementary judgment matrix, and then puts forth the properties of this new matrix. In view of these properties, this paper derives a clear sequencing formula for the new negative judgment matrix, which improves the sequencing principle of AHP. Finally, this new method is applied to personal credit evaluation to show its advantages of conciseness and swiftness.展开更多
In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on ...In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.展开更多
The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requir...The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed.展开更多
文摘The N3 power plant of Taipower is located in the southern tip of Taiwan and connected to the power pool by four out-linking 345-kV overhead transmission circuits. There are two 951-MW generators. Each generator occupied 11% of the system peak load in 1985 when the generator was in commercial operation. Since Taipower is an isolated system, at the N-2 conditions, those generators were reduced to 75% loading to protect the power system. By the way, to avoid damage of negative sequence current (NSC), the limits of the N3 power plant are stricter than those in the IEEE Standard. However, in 2010, the capacity ratio of each generator in the plant to the system peak load has been reduced to 3% only. To increase the economic benefit of those generators, it is required to reassess the operation limits of NSC. EMTP was used to calculate the levels of NSC from the out-linking transmission circuits. From the results of this study, the effects of NSC could be ignored when the four out-linking circuits are in N-0, N-1, and N-2 conditions. The generators can be operated in full loading under these conditions. The modifications to the NSC limits of the N3 power plant are also suggested.
文摘Objective:To compare the efficacy of platinum-and non-platinum-based regimens as first-line treatment for advanced triple-negative breast cancer(TNBC)and analyze the relationship between their efficacy and BRCA gene status.Methods:Retrospectively analyze clinical data of 220 patients diagnosed pathologically with advanced TNBC and treated at the Department of Breast Oncology,Peking University Cancer Hospital from 2013 to 2018 and evaluate the efficacy of chemotherapy.A total of 114 patients had BRCA1/2 gene tested by next generation sequencing(NGS)using peripheral blood,and we analyzed the correlation between their efficacy and BRCA1/2 gene status.Results:Non-platinum-based chemotherapy(NPCT)was administered to 129 and platinum-based chemotherapy(PBCT)to 91 study patients.The clinical benefit rate(CBR)and median progression-free survival(PFS)were not statistically different between NPCT and PBCT groups.The median overall survival(OS)was 30.0 and 22.5 months for PBCT and NPCT group,respectively[P=0.090,hazard ratios(HR)=0.703].BRCA status was assessed in 114 patients,14 of whom had deleterious germline BRCA1/2(g BRCA)mutations(seven in each group).In PBCT group,the CBR was 85.7%and 35.1%for patients with and without deleterious g BRCA mutations,respectively(P=0.039).The median PFS were 14.9 and 5.3 months and median OS were 26.5 and 15.5 months for patients with and without deleterious g BRCA mutations,respectively(P=0.001,P=0.161,respectively).Patients in PBCT group had significantly greater rates of grade 3-4 anemia(5.5%vs.0%)and thrombocytopenia(8.8%vs.0%),whereas palmar-plantar erythrodysesthesia(12.4%vs.0%)and peripheral neuropathy(8.6%vs.1.1%)occurred more frequently in NPCT group.Conclusions:Platinum-based regimens are more effective in patients with deleterious g BRCA mutations,but no difference in patients without BRCA gene mutations,so non-platinum is an option in patients without BRCA gene mutations considering the toxicity and side effect.And we recommend that patients with advanced TNBC should have BRCA gene test.
基金Supported by National Natural Science Foundation of China (No.50679015)China Postdoctoral Science Foundation (No.20090461062)
文摘Negative skin friction (NSF) is one of the important problems when designing a pile foundation. However, the influence of loading sequence on the dragload and downdrag for pile foundation is seldom studied. In this paper, a three-dimensional numerical model was established using FLAC3D. Compared with the results of model test, the established model could be used to study the NSF of pile foundation. The influencing factors were discussed including the length-diameter ratio of pile and the loading sequence of pile head load and surcharge. A case history was analyzed using FLAC3D. The calculated results are in good agreement with the measured results. It is concluded that the dragload and downdrag are remarkably influenced by the loading sequence of pile head load and surcharge. The dragload and downdrag reach the maximum values under the condition of surcharge after pile head load.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51307050。
文摘Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly introduces a 2D Time-Stepping multi-slice finite element method(2D T-S multi-slice FEM)which is used for calculating the magnetic field distribution in induction motors under different sag events.Then the paper deduces the transient analytical expression of stator inrush current based on the classical theory of AC motors and presents a separation method for the positive,negative and zero sequence values based on instantaneous currents.With this method,the paper studies the influences of voltage sag amplitude,phase-angle jump and initial phase angle on the stator positive-and negative-sequence peak currents of 5.5 kW and 55 kW induction motors.This paper further proposes a motor protection method under voltage sag condition with the stator negative-sequence peak currents as the protection threshold,so that the protection false trip can be avoided effectively.Finally,the calculation and analysis results are validated by the comparison of calculated and measured stator peak value of the 5.5 kW induction motor.
文摘this study provided the strong evidence that L2 learner's development patterns in syntactic structure is very similar to the pattern of L1 learners.L2 and L1 learner pass the similar gradual route to get the TL negative structure.But L2 learners' acquisitional sequences are not completely rigid.Individual learners may be interfered by other social or psychological factors en route and they may take longer than two years and some never travel the whole distance.
文摘Currently,a grid-connected inverter is required to inject a dual-sequence current during asymmetric grid sags,which means both positive and negative sequence phases should be tracked.This paper proposes an open-loop phase synchronization(OLS)method of positive and negative sequences for an asymmetric grid based on the moving average filter(MAF),which does not need to separate the positive and negative sequence fundamental components of grid voltage.As a benefit,there is no double-frequency oscillation in the estimated phases at offnominal frequencies since the positive and negative sequence phases are obtained simultaneously.The proposed method not only has the inherent advantages of OLS,but also further improves the dynamic response since the window length of MAF is only 1/6 of the fundamental period.The effectiveness of the proposed OLS is verified by experimental results.
基金supported in part by the National Key Basic Research Program of China ("973" Program) (Grant No. 2013CB035602)the National Natural Science Foundation of China (Grant No. 51107084)the Doctoral Program of Higher Education of China(Grant No. 20100032120081)
文摘Due to the excellent dynamic performance,the Finite Control Set Model Predictive Control has been widely used in various types of converters.However,when Finite Control Set Model Predictive Control is adopted,the switching frequency of converters varies significantly with system operating conditions.Consequently,constant-frequency predictive control strategy has been proposed.Two active voltage vectors and a zero voltage vector are selected within each sampling period.The action time sequence is then calculated.Due to the unsymmetrical distribution of current variation rates around zero,the calculated value of the voltage-vector action time will turn up negative.According to common sense,the voltage-vector action time is greater than or equal to zero.The action time is normally forced to zero whenever a negative value is predicted,resulting in the control failure and performance deterioration.To solve this problem,this paper proposes modified strategy.The modified strategy examines the action time calculated out.When negative action time comes out,the modified strategy reselects the active voltage vector accordingly,instead of forcing the action time to be zero.Optimized action time sequence is further determined by minimizing the cost function.The effectiveness of the modified strategy is clearly verified by experimental tests,and analytical remarks are all founded in practical results.
文摘An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.
基金supported by National Natural Science Foundation of China(No.51637007,No.51507118)
文摘The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.
基金Supported by The Else-Kröner-Fresenius-Foundation(EKFS)and the UWH Forschungsförderung.
文摘Acute and chronic hepatitis B virus(HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellularcarcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.
文摘In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.
文摘In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with common heavy-tailed distribution function F and finite mean μ ∈R^+, {N(n); n ≥0} be a sequence of negative binomial distributed random variables with a parameter p C (0, 1), n ≥ 0, let {M(n); n ≥ 0} be a Poisson process with intensity λ 〉 0. Suppose {N(n); n ≥ 0}, {Xn; n≥1} and {M(n); n ≥ 0} are mutually independent. Write S(n) =N(n)∑i=1 Xi-cM(n).Under the assumption F ∈ C, we prove some large deviation results. These results can be applied to certain problems in insurance and finance.
基金This work was supported by the national high technology research and development program of China(863 Program)(No.2011AA05A109).
文摘When private electric vehicles(EVs),which will be the main part of the EVs’cluster in the future,are plugged in power system by single phase power line,can result to three-phase unbalance problem of distribution network.In this work,a phased-controlled coordinated charging method was put forward to solve this problem.Firstly,the impacts of charging load to distribution network was analyzed based on the equivalent circuit;and then an architecture of the control method and its corresponding optimal control model were introduced.The optimal model is a multi-objective optimization model,which includes minimizing load variance of each phase and minimizing the power asymmetrical degree of three-phase load;lastly,three scenarios considering balance and unbalance cases were envisioned to verify the reasonableness of this control method based on IEEE-37 distribution network.Results show that the phased-controlled coordinated charging method can minimize the load variance as well as the negative sequence current.
文摘This paper presents a new negative judgment matrix that combines the advantages of the reciprocal judgment matrix and the fuzzy complementary judgment matrix, and then puts forth the properties of this new matrix. In view of these properties, this paper derives a clear sequencing formula for the new negative judgment matrix, which improves the sequencing principle of AHP. Finally, this new method is applied to personal credit evaluation to show its advantages of conciseness and swiftness.
文摘In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.
基金support through GrantNo.(600005-Z17X0234)Quanzhou Science and Technology Bureau for financial support through Grant No.(2018Z010)+2 种基金Huaqiao University through Grant No.(17BS201)the Fujian Provincial Department of Science and Technology for financial support through Grant(2018J05121)Authors are also grateful for financial support from the Fujian Provincial Department of Science and Technology through Grant Nos.(2021I0014)and(2018J05121).
文摘The world’s energy consumption and power generation demand will continue to rise.Furthermore,the bulk of the energy resources needed to satisfy the rising demand is far from the load centers.The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current(HVDC)transmission systems.The main technical issues for HVDC transmission systems are loss of synchronism,variation of quadrature currents,amplitude,the inability of station 1(rectifier),and station 2(inverter)to either inject,or absorb active,or reactive power in the network in any circumstances(before a fault occurs,during having a fault in network and after a fault cleared),and the variations of power transfer capabilities.Additionally,faults impact power quality such as voltage dips and power line outage time.This paper presents a method of overcoming the aforementioned technical issues using voltage-source converter(VSC)based HVDC transmission systems with SCADA VIEWER software and dynamic grid simulator.The benefits include having a higher capacity transmission system and proposed best method for control of active and reactive power transfer capabilities.Simulation results obtained using MATLAB validated the experimental results from SCADA Viewer software.The results indicate that the station’s rectifier or inverter can either inject or absorb either active power or reactive power in any circumstance.Also,the reverse power flow under different modes of operation can ride through faults.At a 100.0%power transfer rate,the rectifier injected 775.0 W into the network.At a 0.0%power transfer rate,the rectifier injected 164.0 W into the network.At a-100.0%rated power,the rectifier injected 1264.0 W into the network and direction was also changed.