Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhan...Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhancing sensitivity and maintaining this high sensitivity along with linearity across extensive temperature ranges remain a significant challenge.In this study,we introduce a diamondbased thermistor(DT)characterized by its outstanding sensitivity,swift response time,and broad temperature monitoring capabilities.The temperature constant B for this DT,measured from 30 to 300°C(B30/300),achieves an exceptional value of 8012 K,which notably exceeds the temperature sensing capabilities of previously reported NTC thermistors within this extensive range.Moreover,diamond’s unique thermal conductivity and stability significantly boost the response speed and durability of the DT,offering substantial advantages over traditional ceramic thermistors.The enhanced temperature-sensitive properties of the DT are attributed to the presence of impurity elements in polycrystalline diamond.Impedance analysis indicates a hopping conduction mechanism,likely involving C-H or C-N dipoles at the diamond grain boundaries.This study marks a significant leap forward in diamond thermistor technology and sheds light on the mechanisms of thermal active conduction in diamond materials.展开更多
The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering...The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.展开更多
Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT...Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.展开更多
Dense nano-grained Ni_(0.7)Mn_(2.3O4) negative temperature coefficient(NTC) thermistors were fabricated by a novel two-step sintering approach that combines rapid sintering and principle of conventional two-step sinte...Dense nano-grained Ni_(0.7)Mn_(2.3O4) negative temperature coefficient(NTC) thermistors were fabricated by a novel two-step sintering approach that combines rapid sintering and principle of conventional two-step sintering technique.Samples were sintered at 1042℃ for 30 s in the first rapid step and then at 850-950℃ for 20 h in the second soaking step.Crystal phase,microstructure and electrical properties of sintered samples were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),resistance temperature relationship and aging performance.Sintered samples show a single-phase cubic spinel structure and indicate a high relative density ranging from 84% to 91% of the theoretical density.Moreover,average grain sizes of sintered samples under SEM are distributed between 254 and 570 nm.Meanwhile,the resistivity and the aging coefficient significantly decrease when soaking sintering temperature rises.In addition,the obtained material constant(B) ranges from 3931 to 3981 K.Ni_(0.7)Mn_(2.3)O_(4)-3(soaking at 900℃) and Ni_(0.7)Mn_(2.3O4)-4(soaking at 950℃) present little aging behavior,implying great electrical stability.展开更多
High-quality Mn-Co-Ni oxalate powder was prepared in a mixed solvent of water and ethanol by an improved oxalate coprecipitation approach.The as-prepared oxalate powder appears a controlled homogeneous morphology and ...High-quality Mn-Co-Ni oxalate powder was prepared in a mixed solvent of water and ethanol by an improved oxalate coprecipitation approach.The as-prepared oxalate powder appears a controlled homogeneous morphology and narrower particle size distribution by conveniently adjusing the ratio of water to ethanol.The ceramic,moulded with the high quality oxalate precursor,could be densified at a lower temperature of 1150 ℃;and also exhibits a higher density and the more homogeneous microstructurc with smaller grain sizes of 2-5 urn.Accordingly,the NTC thermistors fabricated from the ceramic have a better yield as compared to the traditional method.展开更多
负温度系数(negative temperature coefficient,NTC)热敏电阻器由于在窄温区内具有极高的灵敏度,在海洋领域中有着广泛的应用,但深海应用中固有的高静水压力,对器件的测温准确度造成不利影响。为了更好地认识这种现象,以珠状NTC热敏电...负温度系数(negative temperature coefficient,NTC)热敏电阻器由于在窄温区内具有极高的灵敏度,在海洋领域中有着广泛的应用,但深海应用中固有的高静水压力,对器件的测温准确度造成不利影响。为了更好地认识这种现象,以珠状NTC热敏电阻器为研究对象,利用海洋环境高压模拟装置,开展了静水压力作用对器件电学特性影响的研究,固定环境温度25℃和0℃,压力范围0~60 MPa,步长5 MPa。结果显示,随着静水压力的增大,NTC热敏电阻器的电阻值减小;环境温度25℃和0℃时,5~60 MPa的静水压力造成的漂移分别为-0.11%~-2.81%、-0.19%~-2.78%,等效于温度漂移分别为0.024~0.624℃、0.036~0.535℃。这为热敏电阻器在深海温度准确测量的提升提供了指引,有利于在海洋测温领域中更好的应用。展开更多
Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperat...Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.展开更多
温度是影响火工品电磁防护其防护效果的主要因素,负温度系数(NTC)热敏电阻用于半导体桥(SCB)能有效提高其射频感度。采用恒流激励和电容放电两种实验,对不同环境温度下NTC热敏电阻对SCB性能的影响规律进行了研究。通过1 A 5 min恒流激...温度是影响火工品电磁防护其防护效果的主要因素,负温度系数(NTC)热敏电阻用于半导体桥(SCB)能有效提高其射频感度。采用恒流激励和电容放电两种实验,对不同环境温度下NTC热敏电阻对SCB性能的影响规律进行了研究。通过1 A 5 min恒流激励实验,分析了室温(25℃)和高温(70℃)时NTC热敏电阻的并联分流情况;25℃时NTC热敏电阻分走59%回路电流,70℃时,对小尺寸SCB(S-SCB)的分流率最大达到63%。在电容放电激励下,探讨了并联NTC热敏电阻SCB在25℃和70℃时电爆性能的变化情况。结果表明,并联NTC热敏电阻前后,典型尺寸(L-SCB)在25℃和70℃下的爆发时间和爆发消耗能量均无显著性变化。而S-SCB并联NTC热敏电阻后,当温度从25℃升至70℃,爆发时间从5.94μs增长到7.18μs,爆发消耗积分能量从0.388 m J降低到0.178 m J。展开更多
Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemic...Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO_(2) to produce alkene and HO_(2) is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO_(2) decomposition is larger than that of the isomerization of RO_(2) to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.展开更多
The effects of La_2O_3 doping on the phase structure.electric properties and aging properties of the samples were researched using XRD,SEM and electric property measurements.The results suggest that the aging value of...The effects of La_2O_3 doping on the phase structure.electric properties and aging properties of the samples were researched using XRD,SEM and electric property measurements.The results suggest that the aging value of Mn_(2.38)Ni_(0.5)Cu_(0.12)O_4 thermistor ceramic samples decreases from 10%to about 6%by only doping La_2O_3.The electrical stability of the sample has improved as well.Such doped material will broaden the production and application scope of Cu contained negative temperature coefficient thermal ceramics.展开更多
The Mn_(1.95-x)Co_(0.21)Ni_(0.84)Sr_(x)O_(4)(MCNS)(0≤x≤0.15)based negative temperature coefficient(NTC)materials are prepared by co-precipitation method.The replacement of Mn by Sr plays a critical role in controlli...The Mn_(1.95-x)Co_(0.21)Ni_(0.84)Sr_(x)O_(4)(MCNS)(0≤x≤0.15)based negative temperature coefficient(NTC)materials are prepared by co-precipitation method.The replacement of Mn by Sr plays a critical role in controlling the lattice parameter,relative density,microstructure,and electrical properties.The lattice parameter and relative density increase with the increase of Sr content.A small amount of Sr restrains the grain growth and increases the bulk density.Moreover,the room resistivityρ25,material constant B25/50,activation energy Ea,and temperature coefficientαvalues of MCNS ceramics are influenced by the Sr content and ranged in 1535.0–2053.6Ω·cm,3654–3709 K,0.3149–0.3197 eV,and(–4.173%)–(–4.111%),respectively.The X-ray photoelectron spectroscopy(XPS)results explain the transformation of MCNS ceramics from n-to p-type semiconductors.The conduction could arise from the hopping polaron between Mn3+/Mn4+and Co^(2+)/Co^(3+) in the octahedral sites.The impedance data analysis also discusses the conduction mechanism of the MCNS ceramic,whereas grain resistance dominates the whole resistance of the samples.Furthermore,the aging coefficient(△R/R)of MCNS ceramics is found to be<0.2%,which indicates the stable distribution of cations in the spinel.Finally,the MCNS ceramics demonstrate excellent thermal durability with<1.3%of resistance shift after 100 thermal shock cycles.展开更多
Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(...Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(0≤x≤0.5)negative temperature coefficient(NTC)ceramics with dual phases and twin structures were successfully prepared in this study.Rietveld refinement indicates that the content of a cubic spinel phase increases with increasing Cu content.The addition of Cu can promote grain growth and densification.Atomic-level structural characterization reveals the evolution of twin morphology from large lamellae with internal fine lamellae(LIT lamellae)to large lamellae without internal fine lamellae(L lamellae)and the distribution of twin boundary defects.First-principles calculations reveal that the dual phases and twin structures have lower oxygen-vacancy formation energy than those in the case of the pure tetragonal and cubic spinel,thereby enhancing the transmission of carriers.Additionally,the three-dimensional charge-density difference shows that metal ions at the interface lose electrons and dwell in high valence states,thereby enhancing electrical stability of the NTC ceramics.Furthermore,the additional Cu ions engage in electron-exchange interactions with Mn and Co ions,thereby reducing resistivity.In comparison to previous Cu-containing systems,the Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)series exhibit superior stability(aging value≤2.84%),tunable room-temperature resistivity(ρ),and material constant(B)value(17.5Ω·cm≤ρ≤7325Ω·cm,2836 K≤B≤4315 K).These discoveries lay a foundation for designing and developing new NTC ceramics with ultra-high performance.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(CUG2106117)Hubei Jewelry Engineering Technology Research Center(CIGTXM03202301)+1 种基金Hubei Provincial Natural Science Foundation(20241350053)GuangDong Basic and Applied Basic Research Foundation(2023A1515110043).
文摘Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhancing sensitivity and maintaining this high sensitivity along with linearity across extensive temperature ranges remain a significant challenge.In this study,we introduce a diamondbased thermistor(DT)characterized by its outstanding sensitivity,swift response time,and broad temperature monitoring capabilities.The temperature constant B for this DT,measured from 30 to 300°C(B30/300),achieves an exceptional value of 8012 K,which notably exceeds the temperature sensing capabilities of previously reported NTC thermistors within this extensive range.Moreover,diamond’s unique thermal conductivity and stability significantly boost the response speed and durability of the DT,offering substantial advantages over traditional ceramic thermistors.The enhanced temperature-sensitive properties of the DT are attributed to the presence of impurity elements in polycrystalline diamond.Impedance analysis indicates a hopping conduction mechanism,likely involving C-H or C-N dipoles at the diamond grain boundaries.This study marks a significant leap forward in diamond thermistor technology and sheds light on the mechanisms of thermal active conduction in diamond materials.
基金Project supported by the National Key Research and Development Program of China(2019YFC0605000)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21000000)+4 种基金the Independent Deployment Project of Ganjiang Innovation Research Institute of Chinese Academy of Sciences(E055A002)the Independent Deployment Project of China Fujian Innovation Laboratory of Optoelectronic Information Technology(2021ZZ109)the Fujian Provincial Natural Fund(2021J05101)the National Natural Science Foundation of China(21771196,62275276)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDGFDC00)。
文摘The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.
基金Project supported by the SPAT of Shanghai Committee of Chinese People's Political Consultative Conference and Shanghai Education Development Foundation (Grant No.2008012)
文摘Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.51302138 and 21663001)the Western Light Talent Training Program of Chinese Academy of Sciences。
文摘Dense nano-grained Ni_(0.7)Mn_(2.3O4) negative temperature coefficient(NTC) thermistors were fabricated by a novel two-step sintering approach that combines rapid sintering and principle of conventional two-step sintering technique.Samples were sintered at 1042℃ for 30 s in the first rapid step and then at 850-950℃ for 20 h in the second soaking step.Crystal phase,microstructure and electrical properties of sintered samples were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),resistance temperature relationship and aging performance.Sintered samples show a single-phase cubic spinel structure and indicate a high relative density ranging from 84% to 91% of the theoretical density.Moreover,average grain sizes of sintered samples under SEM are distributed between 254 and 570 nm.Meanwhile,the resistivity and the aging coefficient significantly decrease when soaking sintering temperature rises.In addition,the obtained material constant(B) ranges from 3931 to 3981 K.Ni_(0.7)Mn_(2.3)O_(4)-3(soaking at 900℃) and Ni_(0.7)Mn_(2.3O4)-4(soaking at 950℃) present little aging behavior,implying great electrical stability.
文摘High-quality Mn-Co-Ni oxalate powder was prepared in a mixed solvent of water and ethanol by an improved oxalate coprecipitation approach.The as-prepared oxalate powder appears a controlled homogeneous morphology and narrower particle size distribution by conveniently adjusing the ratio of water to ethanol.The ceramic,moulded with the high quality oxalate precursor,could be densified at a lower temperature of 1150 ℃;and also exhibits a higher density and the more homogeneous microstructurc with smaller grain sizes of 2-5 urn.Accordingly,the NTC thermistors fabricated from the ceramic have a better yield as compared to the traditional method.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50704021.
文摘Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.
文摘温度是影响火工品电磁防护其防护效果的主要因素,负温度系数(NTC)热敏电阻用于半导体桥(SCB)能有效提高其射频感度。采用恒流激励和电容放电两种实验,对不同环境温度下NTC热敏电阻对SCB性能的影响规律进行了研究。通过1 A 5 min恒流激励实验,分析了室温(25℃)和高温(70℃)时NTC热敏电阻的并联分流情况;25℃时NTC热敏电阻分走59%回路电流,70℃时,对小尺寸SCB(S-SCB)的分流率最大达到63%。在电容放电激励下,探讨了并联NTC热敏电阻SCB在25℃和70℃时电爆性能的变化情况。结果表明,并联NTC热敏电阻前后,典型尺寸(L-SCB)在25℃和70℃下的爆发时间和爆发消耗能量均无显著性变化。而S-SCB并联NTC热敏电阻后,当温度从25℃升至70℃,爆发时间从5.94μs增长到7.18μs,爆发消耗积分能量从0.388 m J降低到0.178 m J。
基金supported by the National Science and Technology Major Project of China (No.2017-I-0004-0004).
文摘Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO_(2) to produce alkene and HO_(2) is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO_(2) decomposition is larger than that of the isomerization of RO_(2) to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.
文摘The effects of La_2O_3 doping on the phase structure.electric properties and aging properties of the samples were researched using XRD,SEM and electric property measurements.The results suggest that the aging value of Mn_(2.38)Ni_(0.5)Cu_(0.12)O_4 thermistor ceramic samples decreases from 10%to about 6%by only doping La_2O_3.The electrical stability of the sample has improved as well.Such doped material will broaden the production and application scope of Cu contained negative temperature coefficient thermal ceramics.
基金supported by Xinjiang Key Laboratory of Electronic Information Materials and Devices Foundation(Grant No.2018D04006)Tianshan Cedar Project of Xinjiang Uygur Autonomous Region(Grant No.2018XS09)the National Natural Science Foundation of China(Grant No.51872326)。
文摘The Mn_(1.95-x)Co_(0.21)Ni_(0.84)Sr_(x)O_(4)(MCNS)(0≤x≤0.15)based negative temperature coefficient(NTC)materials are prepared by co-precipitation method.The replacement of Mn by Sr plays a critical role in controlling the lattice parameter,relative density,microstructure,and electrical properties.The lattice parameter and relative density increase with the increase of Sr content.A small amount of Sr restrains the grain growth and increases the bulk density.Moreover,the room resistivityρ25,material constant B25/50,activation energy Ea,and temperature coefficientαvalues of MCNS ceramics are influenced by the Sr content and ranged in 1535.0–2053.6Ω·cm,3654–3709 K,0.3149–0.3197 eV,and(–4.173%)–(–4.111%),respectively.The X-ray photoelectron spectroscopy(XPS)results explain the transformation of MCNS ceramics from n-to p-type semiconductors.The conduction could arise from the hopping polaron between Mn3+/Mn4+and Co^(2+)/Co^(3+) in the octahedral sites.The impedance data analysis also discusses the conduction mechanism of the MCNS ceramic,whereas grain resistance dominates the whole resistance of the samples.Furthermore,the aging coefficient(△R/R)of MCNS ceramics is found to be<0.2%,which indicates the stable distribution of cations in the spinel.Finally,the MCNS ceramics demonstrate excellent thermal durability with<1.3%of resistance shift after 100 thermal shock cycles.
基金supported by the National Natural Science Foundation of China(Grant No.52002347)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJB430039).
文摘Semiconductor materials with heterogeneous interfaces and twin structures generally demonstrate a higher concentration of carriers and better electrical stability.A variety of Cu-doped Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)(0≤x≤0.5)negative temperature coefficient(NTC)ceramics with dual phases and twin structures were successfully prepared in this study.Rietveld refinement indicates that the content of a cubic spinel phase increases with increasing Cu content.The addition of Cu can promote grain growth and densification.Atomic-level structural characterization reveals the evolution of twin morphology from large lamellae with internal fine lamellae(LIT lamellae)to large lamellae without internal fine lamellae(L lamellae)and the distribution of twin boundary defects.First-principles calculations reveal that the dual phases and twin structures have lower oxygen-vacancy formation energy than those in the case of the pure tetragonal and cubic spinel,thereby enhancing the transmission of carriers.Additionally,the three-dimensional charge-density difference shows that metal ions at the interface lose electrons and dwell in high valence states,thereby enhancing electrical stability of the NTC ceramics.Furthermore,the additional Cu ions engage in electron-exchange interactions with Mn and Co ions,thereby reducing resistivity.In comparison to previous Cu-containing systems,the Co_(0.98)Cu_(x)Mn_(2.02−x)O_(4)series exhibit superior stability(aging value≤2.84%),tunable room-temperature resistivity(ρ),and material constant(B)value(17.5Ω·cm≤ρ≤7325Ω·cm,2836 K≤B≤4315 K).These discoveries lay a foundation for designing and developing new NTC ceramics with ultra-high performance.