This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing...This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.展开更多
Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength ...Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.展开更多
The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quinti...The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.展开更多
<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style...<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>展开更多
In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfacta...In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfactant as dispersants by sand milling.Under the influence of different dispersants,the negative ions releasing amount of functional wall fabrics,the milling process and the storage stability of nano tourmaline powder dispersion were discussed.The results showed that nano tourmaline powder dispersion achieved the smallest average diameter of 44 nm and had best storage stability that the average diameter maintained below 200 nm in 17 days when the addition amount of dispersant was 20 percent of the tourmaline powders’weight.What is more,the quantity of negative ion releasing achieved 6500 ion/cm3 when addition amount of dispersant was 30 percent.This technique could be used to strengthen productivity of nano tourmaline powder dispersion.展开更多
This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results...This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.展开更多
The necessary derivation of negative mass in dispersion dynamics suggests cosmic applications. The method analyzes functional relationships between particle angular frequency, wave vector, rest mass and electromagneti...The necessary derivation of negative mass in dispersion dynamics suggests cosmic applications. The method analyzes functional relationships between particle angular frequency, wave vector, rest mass and electromagnetic or nuclear potential, f(ω, k, m0, V) = 0. A summary of consequential predictions of the dynamics leads to a calculation of ways in which negative mass might influence such phenomena as the rotational velocities that are observed in spiral galaxies. The velocities are found to be not Newtonian in the simple two body approximations for our solar system;but nearly constant with increasing orbital radii. It has moreover been suggested that the motion is due to halo structures of dark matter or dark energy. However, the motion is simply described by many-body gravitation that is transmitted along elastic spiral arms. In this context, we calculate possible effects of negative mass, but without observational confirmation.展开更多
Usually,one considers only the group velocity dispersion(GVD)-and self-phase modulation(SPM)-induced solitons in optic soliton communication while other higher order effects such as the third-order dispersion(TOD),sel...Usually,one considers only the group velocity dispersion(GVD)-and self-phase modulation(SPM)-induced solitons in optic soliton communication while other higher order effects such as the third-order dispersion(TOD),self-steepening(SS),and stimulated Raman scattering are considered only perturbatively,In this paper,we study the existence of the TOD-and SS-induced soliton solutions.The existence conditions of the TOD-and SS-induced bright and dark solitons are quite different from those of the GVD-and SPM-induced solitons.展开更多
The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-or...The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.展开更多
The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics ...The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.展开更多
In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary ...In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary conditions and impose the condition of negative effective permeability of the ferrite slab to derive the dispersion relation related to the proposed structure. The NIM permittivity and permeability are not constant and depend on the operating frequency. The dispersion properties of the nonlinear electromagnetic surface waves (NEM) are analyzed and the associated propagation index is calculated. Results show that the dispersion could be tuned and controlled by selecting the NIM film thickness and the film-cover interface nonlinearity. The proposed structure is supporting unusual types of NEM surface waves having a non-reciprocal behavior widely used in designing optoelectronic devices.展开更多
We show that bi-soliton which is a periodically stationary pulse consisting of two peaks can propagate in a dispersion-managed line under the influence of third-order dispersion. Numerical averaging method is used to ...We show that bi-soliton which is a periodically stationary pulse consisting of two peaks can propagate in a dispersion-managed line under the influence of third-order dispersion. Numerical averaging method is used to extract bi-soliton from a couple of Gaussian pulses and its stability is studied by a free propagation for a long distance.展开更多
The enhanced high gain harmonic generation (EHGHG) scheme has been proposed and shown to be able to significantly enhance the performance of HGHG FEL. In this paper we investigate the EHGHG scheme with negative disp...The enhanced high gain harmonic generation (EHGHG) scheme has been proposed and shown to be able to significantly enhance the performance of HGHG FEL. In this paper we investigate the EHGHG scheme with negative dispersion. The bunching factor at the entrance of the radiator is analyzed, which indicates that the scheme with negative dispersion can further weaken the negative effect of the dispersive strength on the energy spread correction factor. The numerical results from GENESIS (3D-code) are presented, and are in good agreement with our analysis. Then we comparatively study the effects of the initial beam energy spread and the relative phase shift on the radiation power. The results show that the EHGHG scheme with negative dispersion has a larger tolerance on the initial beam energy spread and a nearly equal wide good region of the relative phase shift compared with the case of positive dispersion.展开更多
We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regi...We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.展开更多
Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic me...Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.展开更多
The propagation properties of the breather in birefringent fibers are investigated. The breather can propagate stably in strongly birefringent fibers. The propagation law can be expected. However, random birefringence...The propagation properties of the breather in birefringent fibers are investigated. The breather can propagate stably in strongly birefringent fibers. The propagation law can be expected. However, random birefringence makes the propagation of the breather more complex. The breather will partly disappear and partly appear, even may split into two smaller breathers. In addition, the varying range of relative time displacement between two components of the breather becomes narrower with the effect of third-order dispersion. If third order dispersion is too strong, the breather behavior will disappear gradually during the transmission. The breather can exist in random birefringent fiber with dispersion management rather than in strongly birefringent fiber.展开更多
We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and consideri...We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.展开更多
We investigate the negative refraction effect at a planar interface of a highly absorptive material,where the direct experimental verification is difficult because of the loss-induced skin depth effect. An apparent co...We investigate the negative refraction effect at a planar interface of a highly absorptive material,where the direct experimental verification is difficult because of the loss-induced skin depth effect. An apparent contradiction occurs when we try to determine the group velocity direction by the method of equifrequency contours(EFCs) in detail. This contradiction forbids any physical solution to be found for negative refraction.We conclude that this paradox is mainly caused by the definition of complex wavevector ■which is conventionally adopted in the case of complex permittivity. The complex wavevector may result in ambiguously defined optical path, which limits the application of the classical Snell’s law. We propose a bold suggestion that the complex wavevector■ should be replaced by a complex frequency■ . Therefore, the optical path can always be defined as real. The proposed hypothesis is capable of resolving the contradiction about the loss-induced negative refraction,and the obtained theoretical prediction fits well with the reported experimental results.展开更多
A general method of simulation of processes in dusty based on special programs is presented here. It is pos-sible to prepare the modeling of the dusty in volcano like the dust sound waveguides. Dusty is in state of th...A general method of simulation of processes in dusty based on special programs is presented here. It is pos-sible to prepare the modeling of the dusty in volcano like the dust sound waveguides. Dusty is in state of the plasma .Waveguides are formed by the distribution of dusty particles with various masses m = m(x) in trans-verse coordinate. The dust sound waves propagate along the longitudinal z-direction. In the case of contact of dusty plasma with a semi-infinite dielectric, there exists the dust acoustic mode that possesses the negative group velocity (backward wave) in the specified interval of wave numbers. For analysis it is necessary to use the special numerical methods of calculation of the equations with boundary conditions. Simulation of ion sound wave propagation shows a new dispersion between frequency and wave vector. In some region of pa-rameters of dusty the negative dispersion of wave takes place. This means that the phase and group velocities of wave are opposite (negative dispersion). This phenomenon takes place, when the mass of dust particles has the maximum in the center of the waveguide. The negative dispersion caused the instability in dusty, which open the possibility to create a new phenomenon in dusty including the high temperature and the flame.展开更多
The outstanding difference between high temperature superconductors and low temperature superconductors is the sign of the Hall coefficient, properly understood. Since the Lorentz force acts on particles, not voids no...The outstanding difference between high temperature superconductors and low temperature superconductors is the sign of the Hall coefficient, properly understood. Since the Lorentz force acts on particles, not voids nor immobile ions, we propose that the experimental positive coefficient is due to dispersion dynamics in valence bands, i.e. on electrons with positive charge/mass ratio, but with negative charge and negative effective mass. In HiT ccompounds, anionic and cationic doping creates holes that substitute for the lattice distortions that bind Cooper pairs in metallic superconductors such as Nb. In both types of superconductor, the conventional notion of antiparallel spins S = 0, with paired wave vectors k and -k, is maintained;but in the ceramics “holes” h, produced by chemical doping and measured in the normal state, are available to bond super-conducting Boson pairs via h−or h02?excitons.展开更多
文摘This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.
基金Shihong Jia was financially supported by the National Natural Science Foundation of China(Grant No.32001120)the Fundamental Research Funds for the Central Universities(Grant No.31020200QD026)+1 种基金Qiulong Yin was supported by the National Natural Science Foundation of China(Grant No.32001171)Ying Luo was supported by the Innovation Capability Support Program of Shaanxi(Grant No.2022KRM090).
文摘Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.
基金supported by the Postdoctoral Fund of China(Grant No.2011M501402)the National Natural Science Foundation of China(Grant No.61275039)+2 种基金the 973 Program of China(Grant No.2012CB315702)the Key Project of the Chinese Ministry of Education,China(Grant No.210186)the Major Project of the Natural Science Foundation supported by the Educational Department of Sichuan Province,China(Grant Nos.13ZA0081 and 12ZB019)
文摘The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.
文摘<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>
文摘In this paper,a kind of wall fabric’s surface treatment agent modified with nonionic surfactant was reported.This surface treatment agent was prepared by using nano tourmaline powder dispersion in water with surfactant as dispersants by sand milling.Under the influence of different dispersants,the negative ions releasing amount of functional wall fabrics,the milling process and the storage stability of nano tourmaline powder dispersion were discussed.The results showed that nano tourmaline powder dispersion achieved the smallest average diameter of 44 nm and had best storage stability that the average diameter maintained below 200 nm in 17 days when the addition amount of dispersant was 20 percent of the tourmaline powders’weight.What is more,the quantity of negative ion releasing achieved 6500 ion/cm3 when addition amount of dispersant was 30 percent.This technique could be used to strengthen productivity of nano tourmaline powder dispersion.
基金Project supported by the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant Nos 05JY029-084 and 04JY029-103), the Key Program of Natural Science Foundation of Educational Commission of Sichuan Province (Grant No 2006A124), and the Foundation of Science & Technology Development of Chengdu University of Information Technology (Grant No KYTZ20060604).
文摘This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.
文摘The necessary derivation of negative mass in dispersion dynamics suggests cosmic applications. The method analyzes functional relationships between particle angular frequency, wave vector, rest mass and electromagnetic or nuclear potential, f(ω, k, m0, V) = 0. A summary of consequential predictions of the dynamics leads to a calculation of ways in which negative mass might influence such phenomena as the rotational velocities that are observed in spiral galaxies. The velocities are found to be not Newtonian in the simple two body approximations for our solar system;but nearly constant with increasing orbital radii. It has moreover been suggested that the motion is due to halo structures of dark matter or dark energy. However, the motion is simply described by many-body gravitation that is transmitted along elastic spiral arms. In this context, we calculate possible effects of negative mass, but without observational confirmation.
文摘Usually,one considers only the group velocity dispersion(GVD)-and self-phase modulation(SPM)-induced solitons in optic soliton communication while other higher order effects such as the third-order dispersion(TOD),self-steepening(SS),and stimulated Raman scattering are considered only perturbatively,In this paper,we study the existence of the TOD-and SS-induced soliton solutions.The existence conditions of the TOD-and SS-induced bright and dark solitons are quite different from those of the GVD-and SPM-induced solitons.
文摘The time delay(TD) of femtoseeond pulses is studied for the first time, which generated from the nonlinear optical loop mirror composed of dispersion decreasing fiber(DDF-NOLM). The results show that the higher-order dispersion and high order nonlinearities such as Raman frequency shift play a key role in producing TD, and that the time delay ean be suppressed by the third-order dispersion(TOD) in DDF-NOLM. The mechanism of the time delay suppression is also discussed in detail.
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407000 and2016YFC1401500the National Natural Science Foundation of China under contract Nos 41806045 and 51579090。
文摘The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.
文摘In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary conditions and impose the condition of negative effective permeability of the ferrite slab to derive the dispersion relation related to the proposed structure. The NIM permittivity and permeability are not constant and depend on the operating frequency. The dispersion properties of the nonlinear electromagnetic surface waves (NEM) are analyzed and the associated propagation index is calculated. Results show that the dispersion could be tuned and controlled by selecting the NIM film thickness and the film-cover interface nonlinearity. The proposed structure is supporting unusual types of NEM surface waves having a non-reciprocal behavior widely used in designing optoelectronic devices.
文摘We show that bi-soliton which is a periodically stationary pulse consisting of two peaks can propagate in a dispersion-managed line under the influence of third-order dispersion. Numerical averaging method is used to extract bi-soliton from a couple of Gaussian pulses and its stability is studied by a free propagation for a long distance.
基金Supported by National Natural Science Foundation of China (10975137)
文摘The enhanced high gain harmonic generation (EHGHG) scheme has been proposed and shown to be able to significantly enhance the performance of HGHG FEL. In this paper we investigate the EHGHG scheme with negative dispersion. The bunching factor at the entrance of the radiator is analyzed, which indicates that the scheme with negative dispersion can further weaken the negative effect of the dispersive strength on the energy spread correction factor. The numerical results from GENESIS (3D-code) are presented, and are in good agreement with our analysis. Then we comparatively study the effects of the initial beam energy spread and the relative phase shift on the radiation power. The results show that the EHGHG scheme with negative dispersion has a larger tolerance on the initial beam energy spread and a nearly equal wide good region of the relative phase shift compared with the case of positive dispersion.
文摘We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.
文摘Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.
文摘The propagation properties of the breather in birefringent fibers are investigated. The breather can propagate stably in strongly birefringent fibers. The propagation law can be expected. However, random birefringence makes the propagation of the breather more complex. The breather will partly disappear and partly appear, even may split into two smaller breathers. In addition, the varying range of relative time displacement between two components of the breather becomes narrower with the effect of third-order dispersion. If third order dispersion is too strong, the breather behavior will disappear gradually during the transmission. The breather can exist in random birefringent fiber with dispersion management rather than in strongly birefringent fiber.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International Science and Technology Cooperation Program of China(Grant No.2011DFA11300)
文摘We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.
基金the Fundamental Research Funds for the Central Universities of China(No.2017B14914)the Postdoctoral Science Foundation of China(No.2016M601586)+1 种基金the National Natural Science Foundation of China(No.11874140)the Science and Technology Project of Changzhou(No.CJ20180048)
文摘We investigate the negative refraction effect at a planar interface of a highly absorptive material,where the direct experimental verification is difficult because of the loss-induced skin depth effect. An apparent contradiction occurs when we try to determine the group velocity direction by the method of equifrequency contours(EFCs) in detail. This contradiction forbids any physical solution to be found for negative refraction.We conclude that this paradox is mainly caused by the definition of complex wavevector ■which is conventionally adopted in the case of complex permittivity. The complex wavevector may result in ambiguously defined optical path, which limits the application of the classical Snell’s law. We propose a bold suggestion that the complex wavevector■ should be replaced by a complex frequency■ . Therefore, the optical path can always be defined as real. The proposed hypothesis is capable of resolving the contradiction about the loss-induced negative refraction,and the obtained theoretical prediction fits well with the reported experimental results.
文摘A general method of simulation of processes in dusty based on special programs is presented here. It is pos-sible to prepare the modeling of the dusty in volcano like the dust sound waveguides. Dusty is in state of the plasma .Waveguides are formed by the distribution of dusty particles with various masses m = m(x) in trans-verse coordinate. The dust sound waves propagate along the longitudinal z-direction. In the case of contact of dusty plasma with a semi-infinite dielectric, there exists the dust acoustic mode that possesses the negative group velocity (backward wave) in the specified interval of wave numbers. For analysis it is necessary to use the special numerical methods of calculation of the equations with boundary conditions. Simulation of ion sound wave propagation shows a new dispersion between frequency and wave vector. In some region of pa-rameters of dusty the negative dispersion of wave takes place. This means that the phase and group velocities of wave are opposite (negative dispersion). This phenomenon takes place, when the mass of dust particles has the maximum in the center of the waveguide. The negative dispersion caused the instability in dusty, which open the possibility to create a new phenomenon in dusty including the high temperature and the flame.
文摘The outstanding difference between high temperature superconductors and low temperature superconductors is the sign of the Hall coefficient, properly understood. Since the Lorentz force acts on particles, not voids nor immobile ions, we propose that the experimental positive coefficient is due to dispersion dynamics in valence bands, i.e. on electrons with positive charge/mass ratio, but with negative charge and negative effective mass. In HiT ccompounds, anionic and cationic doping creates holes that substitute for the lattice distortions that bind Cooper pairs in metallic superconductors such as Nb. In both types of superconductor, the conventional notion of antiparallel spins S = 0, with paired wave vectors k and -k, is maintained;but in the ceramics “holes” h, produced by chemical doping and measured in the normal state, are available to bond super-conducting Boson pairs via h−or h02?excitons.