We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and o...We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters. Then based on the physical model of pipeline and by introducing leakage boundary condition, we simulate the variation of pressure and flow rate in pipeline after leakage, the influence of leakage scale and leakage position on the pressure and flow rate in the pipeline. The results show that the leakage scale mainly influences the amplitude of negative pressure wave, and that the leakage position inflnenees both the amplitude and the shape of the curves of negative pressure wave.展开更多
BACKGROUND Apical hypertrophic cardiomyopathy(AHCM)is a subtype of hypertrophic cardiomyopathy.Due to its location,the thickening of the left ventricular apex can be missed on echocardiography.Giant negative T waves(G...BACKGROUND Apical hypertrophic cardiomyopathy(AHCM)is a subtype of hypertrophic cardiomyopathy.Due to its location,the thickening of the left ventricular apex can be missed on echocardiography.Giant negative T waves(GNTs)in left-sided chest leads are the hallmark electrocardiogram(ECG)change of AHCM.CASE SUMMARY The first patient was a 68-year-old woman complaining of recurrent chest tightness persisting for more than 3 years.The second was a 59-year-old man complaining of spasmodic chest tightness persisting for more than 2 years.The third was a 55-year-old woman complaining of recurrent chest pain persisting for 4 mo.In all three cases,GNTs were observed several years prior to apical cardiac hypertrophy after other causes of T-wave inversion were ruled out.CONCLUSION Electrophysiological abnormalities of AHCM appear earlier than structural abnormalities,confirming the early predictive value of ECG for AHCM.展开更多
In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses w...In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses with a repetition frequency 12.5 MHz.The simulations are performed continuously during a single run while accounting for charges accumulated inside(surface charges)and outside(space charges)the tube.The plasma forming gas mixture(He/O2=99.8%/0.2%)is injected through the discharge tube into the surrounding humid air.We show that an IW can emerge from the tube exit at a pulse rising edge(as a negative IW)and at a falling edge of the same pulse(as a positive IW).It is demonstrated that remnants of the negative and positive charges play an essential role in the discharge evolution.The first pulse travels the shortest distance as it propagates through the initially non-ionized environment.The IWs developing during the second pulse essentially enlarge the plasma plume length.At the same time,the IWs generated by the third pulse eventually decay due to the remnants of charges accumulated during the previous pulses.Accumulated memory charges can lead to the IW extinction.展开更多
Complete control of spatially propagating waves(PWs)and surface waves(SWs)is an ultimate goal that scientists and engineers seek for,in which negative reflection of PW and negative surface wave are two exotic phenomen...Complete control of spatially propagating waves(PWs)and surface waves(SWs)is an ultimate goal that scientists and engineers seek for,in which negative reflection of PW and negative surface wave are two exotic phenomena.Here,we experimentally demonstrate an anisotropic digital coding metasurface capable of controlling both PWs and SWs with a single coding pattern.On the basis of the digital description of coding metasurfaces,a simple coding method is proposed to allow dual functionalities(either PW or SW manipulations)under two orthogonal polarizations at arbitrarily oblique incidences,thus improving the adaptability of digital coding metasurfaces in more practical circumstances.With elaborately designed ellipse-shaped coding particles,we experimentally demonstrate various functions under oblique incidences,including the negative reflection of PW,negative SW,anomalous reflection and their arbitrary combinations,all having good agreements with theoretical and numerical predictions.We believe that the proposed method may enable the digital coding metasurfaces to have broad applications in radar detections,wireless communications and imaging.展开更多
Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence...Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.展开更多
A compression wave discharged from an open end of a tube causes positive impulsive noise. Active noise cancellation which is the canceling of the noise by the addition of an inverse wave is a useful technique for redu...A compression wave discharged from an open end of a tube causes positive impulsive noise. Active noise cancellation which is the canceling of the noise by the addition of an inverse wave is a useful technique for reducing impulsive noise. The main objective of this study is to present the design for a negative impulsive wave generator utilizing unsteady mass influx. In this paper, in order to clarify the relationship between the unsteady mass influx and the negative impulsive wave! numerical and aeroacoustic analyses have been carried out using an unsteady expansion wave discharged from an open end of a shock tube. As a result, the effect of an unsteady expansion wave on a negative impulsive wave was clarified.展开更多
Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil...Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.展开更多
文摘We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters. Then based on the physical model of pipeline and by introducing leakage boundary condition, we simulate the variation of pressure and flow rate in pipeline after leakage, the influence of leakage scale and leakage position on the pressure and flow rate in the pipeline. The results show that the leakage scale mainly influences the amplitude of negative pressure wave, and that the leakage position inflnenees both the amplitude and the shape of the curves of negative pressure wave.
文摘BACKGROUND Apical hypertrophic cardiomyopathy(AHCM)is a subtype of hypertrophic cardiomyopathy.Due to its location,the thickening of the left ventricular apex can be missed on echocardiography.Giant negative T waves(GNTs)in left-sided chest leads are the hallmark electrocardiogram(ECG)change of AHCM.CASE SUMMARY The first patient was a 68-year-old woman complaining of recurrent chest tightness persisting for more than 3 years.The second was a 59-year-old man complaining of spasmodic chest tightness persisting for more than 2 years.The third was a 55-year-old woman complaining of recurrent chest pain persisting for 4 mo.In all three cases,GNTs were observed several years prior to apical cardiac hypertrophy after other causes of T-wave inversion were ruled out.CONCLUSION Electrophysiological abnormalities of AHCM appear earlier than structural abnormalities,confirming the early predictive value of ECG for AHCM.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2021-1026 of November 15,2021)jointly by the National Key Research and Development Plan of China(No.2021YFE0114700)。
文摘In this paper,we discuss the properties of ionization waves(IWs)in a multi-pulsed plasma jet while using the two-dimensional computational approach.The IWs are generated by application of three short negative pulses with a repetition frequency 12.5 MHz.The simulations are performed continuously during a single run while accounting for charges accumulated inside(surface charges)and outside(space charges)the tube.The plasma forming gas mixture(He/O2=99.8%/0.2%)is injected through the discharge tube into the surrounding humid air.We show that an IW can emerge from the tube exit at a pulse rising edge(as a negative IW)and at a falling edge of the same pulse(as a positive IW).It is demonstrated that remnants of the negative and positive charges play an essential role in the discharge evolution.The first pulse travels the shortest distance as it propagates through the initially non-ionized environment.The IWs developing during the second pulse essentially enlarge the plasma plume length.At the same time,the IWs generated by the third pulse eventually decay due to the remnants of charges accumulated during the previous pulses.Accumulated memory charges can lead to the IW extinction.
基金supported by the National Natural Science Foundation of China(61138001,61302018,61401089,61401091,61571117,61501112,61501117)the National Instrumentation Program(2013YQ200647)the 111 Project(111-2-05).
文摘Complete control of spatially propagating waves(PWs)and surface waves(SWs)is an ultimate goal that scientists and engineers seek for,in which negative reflection of PW and negative surface wave are two exotic phenomena.Here,we experimentally demonstrate an anisotropic digital coding metasurface capable of controlling both PWs and SWs with a single coding pattern.On the basis of the digital description of coding metasurfaces,a simple coding method is proposed to allow dual functionalities(either PW or SW manipulations)under two orthogonal polarizations at arbitrarily oblique incidences,thus improving the adaptability of digital coding metasurfaces in more practical circumstances.With elaborately designed ellipse-shaped coding particles,we experimentally demonstrate various functions under oblique incidences,including the negative reflection of PW,negative SW,anomalous reflection and their arbitrary combinations,all having good agreements with theoretical and numerical predictions.We believe that the proposed method may enable the digital coding metasurfaces to have broad applications in radar detections,wireless communications and imaging.
基金supported,by National Natural Science Foundation of China(Program number:50105015,50375103)Program for New Century Excellent Talents in University(Program number:NCET-05-0110)+2 种基金Fok Ying Tung Education Foundation(Program number:91051)Beijing Nova Program(Program number:2003B33)CNPC Innovation Fund.
文摘Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.
文摘A compression wave discharged from an open end of a tube causes positive impulsive noise. Active noise cancellation which is the canceling of the noise by the addition of an inverse wave is a useful technique for reducing impulsive noise. The main objective of this study is to present the design for a negative impulsive wave generator utilizing unsteady mass influx. In this paper, in order to clarify the relationship between the unsteady mass influx and the negative impulsive wave! numerical and aeroacoustic analyses have been carried out using an unsteady expansion wave discharged from an open end of a shock tube. As a result, the effect of an unsteady expansion wave on a negative impulsive wave was clarified.
文摘Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.