The present research work was carried out to isolate and identify Newcastle disease virus (NDV) by using haemagglutination inhibition (HI) test and HA-HI virus isolation, embryonated eggs (EE) and chicken embryo fibro...The present research work was carried out to isolate and identify Newcastle disease virus (NDV) by using haemagglutination inhibition (HI) test and HA-HI virus isolation, embryonated eggs (EE) and chicken embryo fibroblasts (CEF). A total of 95 clinical (blood, tracheal and cloacal swabs) and post-mortem (brain, lung, colon and spleen) samples were collected from chickens of field outbreaks of suspected Newcastle disease virus (NDV). The HI and HA-HI were employed to detect NDV in tissue homogenates of all the clinical and post-mortem samples as well as laboratory samples (AF and ICF). Among the four different types of post-mortem samples, virus isolation rate was found to be low in body organs. In CEF cell culture system, the rate of virus isolation from all the aforesaid samples was found to be at 100% with the exception of serum samples;while in tracheal and cloacal swabs, it was at 90%;while in serum, it was at 10%, in all clinical cases. The isolation rate of NDV was higher in CEF culture system (66.7%) compared to that of avian embryos (33.3%). Samples were inoculated and the allantoic fluid (AF) of the dead embryos and the infected culture fluid (ICF) of the CEF were harvested at 24 to 96 hours of the post-infection, respectively, which revealed that the virulent strain of NDV is highly prevalent in the region. The prevalence of NDV was established at 1.1%, 2.1% and 4.2% using HA-HI, EE, and CEF methods. Rapid detection and identification of the virus are crucial for the effective control of the disease as conventional diagnostic methods such as virus isolation on embryonated eggs followed by serological identification in haemagglutination-inhibition test are laborious and time-consuming. The speed of the diagnosis can be considerably increased by using methods based on molecular biology, e.g. reverse transcription—polymerase chain reaction. However, the genetic variability of APMV-1 isolates should be considered carefully as the potential cause for false negative results of genetic-based laboratory tests.展开更多
The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial thr...The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial threat to public health because of a high mortality rate. In this study, we sequenced whole genomes of eight H5N1 avian influenza viruses isolated from domestic poultry in eastern China and compared them with those of typical influenza virus strains. Phylogenetic analyses showed that all eight genomes belonged to clade 2.3.2.1 and clade 7.2, the two main circulating clades in China. Viruses that clustered in clade 2.3.2.1 shared a high degree of homology with H5N1 isolates located in eastern Asian. Isolates that clustered in clade 7.2 were found to circulate throughout China, with an east-to-west density gradient. Pathogenicity studies in mice showed that these isolates replicate in the lungs, and clade 2.3.2.1 viruses exhibit a notably higher degree of virulence compared to clade 7.2 viruses. Our results contribute to the elucidation of the biological characterization and pathogenicity of HPAI H5N1 viruses.展开更多
This work has been undertaken to study the occurrence of Clostridium perfringens contamination in the poultry feed ingredients and find out its in-vitro antibiotic sensitivity pattern to various antimicrobial drugs. T...This work has been undertaken to study the occurrence of Clostridium perfringens contamination in the poultry feed ingredients and find out its in-vitro antibiotic sensitivity pattern to various antimicrobial drugs. Two hundred and ninety-eight poultry feed ingredient samples received at Poultry Disease Diagnosis and Surveillance Laboratory, Namakkal, Tamil Nadu in South India were screened for the presence of C. perfringens. The organisms were isolated in Perfringens agar under anaerobic condition and subjected to standard biochemical tests for confirmation. In vitro antibiogram assay has been carried out to determine the sensitivity pattern of the isolates to various antimicrobial drugs. One hundred and one isolates of C. perfringens were obtained from a total of 298 poultry feed ingredient samples. Overall positivity of 33.89% could be made from the poultry feed ingredients. Highest level of C. perfringens contamination was detected in fish meal followed by bone meal, meat and bone meal and dry fish.Antibiogram assay indicated that the organisms are highly sensitive to gentamicin(100%), chlortetracycline(96.67%), gatifloxacin(93.33%), ciprofloxacin(86.67%), ofloxacin(86.67%) and lincomycin(86.67%). All the isolates were resistant to penicillin-G. Feed ingredients rich in animal proteins are the major source of C. perfringens contamination.展开更多
文摘The present research work was carried out to isolate and identify Newcastle disease virus (NDV) by using haemagglutination inhibition (HI) test and HA-HI virus isolation, embryonated eggs (EE) and chicken embryo fibroblasts (CEF). A total of 95 clinical (blood, tracheal and cloacal swabs) and post-mortem (brain, lung, colon and spleen) samples were collected from chickens of field outbreaks of suspected Newcastle disease virus (NDV). The HI and HA-HI were employed to detect NDV in tissue homogenates of all the clinical and post-mortem samples as well as laboratory samples (AF and ICF). Among the four different types of post-mortem samples, virus isolation rate was found to be low in body organs. In CEF cell culture system, the rate of virus isolation from all the aforesaid samples was found to be at 100% with the exception of serum samples;while in tracheal and cloacal swabs, it was at 90%;while in serum, it was at 10%, in all clinical cases. The isolation rate of NDV was higher in CEF culture system (66.7%) compared to that of avian embryos (33.3%). Samples were inoculated and the allantoic fluid (AF) of the dead embryos and the infected culture fluid (ICF) of the CEF were harvested at 24 to 96 hours of the post-infection, respectively, which revealed that the virulent strain of NDV is highly prevalent in the region. The prevalence of NDV was established at 1.1%, 2.1% and 4.2% using HA-HI, EE, and CEF methods. Rapid detection and identification of the virus are crucial for the effective control of the disease as conventional diagnostic methods such as virus isolation on embryonated eggs followed by serological identification in haemagglutination-inhibition test are laborious and time-consuming. The speed of the diagnosis can be considerably increased by using methods based on molecular biology, e.g. reverse transcription—polymerase chain reaction. However, the genetic variability of APMV-1 isolates should be considered carefully as the potential cause for false negative results of genetic-based laboratory tests.
基金supported in part by the funding from the National Natural Scientific Foundation(81370518)the National High Technology Research and Development Program of China(2015AA020924 and 2013ZX10004003)supported by a grant from the Beijing Nova Program(No.Z141107001814054)
文摘The highly pathogenic avian influenza (HPAI) H5N1 virus has caused several outbreaks in domestic poultry. Despite great efforts to control the spread of this virus, it continues to evolve and poses a substantial threat to public health because of a high mortality rate. In this study, we sequenced whole genomes of eight H5N1 avian influenza viruses isolated from domestic poultry in eastern China and compared them with those of typical influenza virus strains. Phylogenetic analyses showed that all eight genomes belonged to clade 2.3.2.1 and clade 7.2, the two main circulating clades in China. Viruses that clustered in clade 2.3.2.1 shared a high degree of homology with H5N1 isolates located in eastern Asian. Isolates that clustered in clade 7.2 were found to circulate throughout China, with an east-to-west density gradient. Pathogenicity studies in mice showed that these isolates replicate in the lungs, and clade 2.3.2.1 viruses exhibit a notably higher degree of virulence compared to clade 7.2 viruses. Our results contribute to the elucidation of the biological characterization and pathogenicity of HPAI H5N1 viruses.
文摘This work has been undertaken to study the occurrence of Clostridium perfringens contamination in the poultry feed ingredients and find out its in-vitro antibiotic sensitivity pattern to various antimicrobial drugs. Two hundred and ninety-eight poultry feed ingredient samples received at Poultry Disease Diagnosis and Surveillance Laboratory, Namakkal, Tamil Nadu in South India were screened for the presence of C. perfringens. The organisms were isolated in Perfringens agar under anaerobic condition and subjected to standard biochemical tests for confirmation. In vitro antibiogram assay has been carried out to determine the sensitivity pattern of the isolates to various antimicrobial drugs. One hundred and one isolates of C. perfringens were obtained from a total of 298 poultry feed ingredient samples. Overall positivity of 33.89% could be made from the poultry feed ingredients. Highest level of C. perfringens contamination was detected in fish meal followed by bone meal, meat and bone meal and dry fish.Antibiogram assay indicated that the organisms are highly sensitive to gentamicin(100%), chlortetracycline(96.67%), gatifloxacin(93.33%), ciprofloxacin(86.67%), ofloxacin(86.67%) and lincomycin(86.67%). All the isolates were resistant to penicillin-G. Feed ingredients rich in animal proteins are the major source of C. perfringens contamination.