Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different ...Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.展开更多
Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability...Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability characteristics of soil used as fill material.Utilization of waste plastic materials to enhance the engineering properties of soil is a sustainable approach.Additionally,the use of raw products directly from plastic recycling units in the form of flakes and pellets as soil additives has the potential to further enhance the economic benefits of this method.This study randomly mixed plastic materials with soil for use in the construction of earth embankments,such as river levees,dykes,and canal diversion structures,and evaluated the effectiveness of these materials in reducing seepage failures in hydraulic structures.To achieve these goals,this study collected high-density polyethylene(HDPE)plastic from plastic recycling units and used soil mixed with HDPE plastic in the form of flakes and pellets in different contents as embankment fill materials,then evaluated how these materials affected the piping features.Laboratory experiments were conducted to determine the seepage velocity and critical hydraulic gradient of soil mixed with plastics in various contents and to compare the values with those of plain soil.The results showed that random distribution of waste plastics in the form of flakes and pellets in soil is an effective method for improving the piping resistance of soil.展开更多
The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline.The pipeline spanning initiation is experimentally observed and dis...The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline.The pipeline spanning initiation is experimentally observed and discussed in this article.It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation.A flow-pipe-seepage sequential coupling Finite Element Method(FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field.A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe.Parametric study is performed to investigate the effects of inflow velocity,pipe embedment on the pressure-drop,and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation.It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.展开更多
文摘Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.
文摘Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability characteristics of soil used as fill material.Utilization of waste plastic materials to enhance the engineering properties of soil is a sustainable approach.Additionally,the use of raw products directly from plastic recycling units in the form of flakes and pellets as soil additives has the potential to further enhance the economic benefits of this method.This study randomly mixed plastic materials with soil for use in the construction of earth embankments,such as river levees,dykes,and canal diversion structures,and evaluated the effectiveness of these materials in reducing seepage failures in hydraulic structures.To achieve these goals,this study collected high-density polyethylene(HDPE)plastic from plastic recycling units and used soil mixed with HDPE plastic in the form of flakes and pellets in different contents as embankment fill materials,then evaluated how these materials affected the piping features.Laboratory experiments were conducted to determine the seepage velocity and critical hydraulic gradient of soil mixed with plastics in various contents and to compare the values with those of plain soil.The results showed that random distribution of waste plastics in the form of flakes and pellets in soil is an effective method for improving the piping resistance of soil.
基金supported by the National Natural Science Foundation of China (Grant No. 10532070)the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-YW-L02)
文摘The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline.The pipeline spanning initiation is experimentally observed and discussed in this article.It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation.A flow-pipe-seepage sequential coupling Finite Element Method(FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field.A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe.Parametric study is performed to investigate the effects of inflow velocity,pipe embedment on the pressure-drop,and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation.It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.