This report adds three protonic semiconductor models to explain the "abnormally" high electrical conductivity of pure liquid water characterized by the three industrial consensus parameters, the ion product(...This report adds three protonic semiconductor models to explain the "abnormally" high electrical conductivity of pure liquid water characterized by the three industrial consensus parameters, the ion product(or pH)and the two ion mobilities. Existence of long-range order in fluid water under numerous daily conditions led us to extend the 1933 Bernal-Fowler hexagonally close packed crystalline Ice Lattice to model liquid water as Melted Ice. Protonic kinetic energy band and bound(trap) pictures provide semiconductor-physics based new models of these three parameters. They are extrapolatable engineered-models for developing novel biological, chemical, electrical, mechanical and medical applications of liquid water.展开更多
基金funded by the National Natural Science Foundation of China
文摘This report adds three protonic semiconductor models to explain the "abnormally" high electrical conductivity of pure liquid water characterized by the three industrial consensus parameters, the ion product(or pH)and the two ion mobilities. Existence of long-range order in fluid water under numerous daily conditions led us to extend the 1933 Bernal-Fowler hexagonally close packed crystalline Ice Lattice to model liquid water as Melted Ice. Protonic kinetic energy band and bound(trap) pictures provide semiconductor-physics based new models of these three parameters. They are extrapolatable engineered-models for developing novel biological, chemical, electrical, mechanical and medical applications of liquid water.