期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
基于自动终止准则改进的kd-tree粒子近邻搜索研究
1
作者 张挺 王宗锴 +1 位作者 林震寰 郑相涵 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期217-229,共13页
对于大规模运动模拟问题而言,近邻点的搜索效率将对整体的运算效率产生显著影响。本文基于关联性分析建立kd-tree的最大深度dmax与粒子总数N的自适应关系式,提出了kd-tree自动终止准则,即ATC-kd-tree,同时还考虑了叶子节点大小阈值n_(0... 对于大规模运动模拟问题而言,近邻点的搜索效率将对整体的运算效率产生显著影响。本文基于关联性分析建立kd-tree的最大深度dmax与粒子总数N的自适应关系式,提出了kd-tree自动终止准则,即ATC-kd-tree,同时还考虑了叶子节点大小阈值n_(0)对近邻搜索效率的影响。试验表明,ATC-kd-tree具有更高的近邻搜索效率,相较于不使用自动终止准则的kd-tree搜索效率最高提升46%,且适用性更强,可求解不同N值的近邻搜索问题,解决了粒子总数N发生改变时需要再次率定最大深度dmax的问题。同时,本文还提出了网格搜索法组合坐标下降法的两步参数优化算法GSCD法。通过2维阿米巴虫形状的参数优化试验发现,GSCD法可更为快速地率定ATC-kd-tree的可变参数,其优化效率比网格搜索法最高提升了205%,相较于改进网格搜索法最高提升了90%。研究结果表明,ATC-kd-tree和GSCD法不仅提高了近邻搜索的效率,也为复杂运动中近邻粒子搜索问题提供了一种更为高效的解决方案,能够显著降低计算资源的消耗,进一步提升模拟的精度和效率。 展开更多
关键词 KD-tree 粒子近邻搜索 自适应 网格搜索法 坐标下降法
下载PDF
Vertex-Neighbor-Scattering Number Of Trees 被引量:1
2
作者 Zongtian Wei Yong Liu Anchan Mai 《Advances in Pure Mathematics》 2011年第4期160-162,共3页
A vertex subversion strategy of a graph G=(V,E) is a set of vertices S V(G) whose closed neighborhood is deleted from G . The survival subgraph is denoted by G/S . We call S a cut-strategy of G if G/S is disconnected,... A vertex subversion strategy of a graph G=(V,E) is a set of vertices S V(G) whose closed neighborhood is deleted from G . The survival subgraph is denoted by G/S . We call S a cut-strategy of G if G/S is disconnected, or is a clique, or is φ . The vertex-neighbor scattering number of G is defined to be VNS(G)=max{ω(G/S)-|S|} , where S is any cut-strategy of G , and ω(G/G) is the number of the components of G/S . It has been proved that the computing problem of this parameter is NP–complete, so we discuss the properties of vertex-neighbor-scattering number of trees in this paper. 展开更多
关键词 Vertex-neighbor-Scattering Number tree Path STAR COMET
下载PDF
A Logarithmic-Complexity Algorithm for Nearest Neighbor Classification Using Layered Range Trees
3
作者 Ibrahim Al-Bluwi Ashraf Elnagar 《Intelligent Information Management》 2012年第2期39-43,共5页
Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The pr... Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in , where k is a very small constant when compared with the dataset size n and d is the number of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 Nearest neighbor CLASSIFIER RANGE trees Logarithmic Order
下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
4
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
下载PDF
Generating Tree-Lists by Fusing Individual Tree Detection and Nearest Neighbor Imputation Using Airborne LiDAR Data
5
作者 Joonghoon Shin Hailemariam Temesgen 《Open Journal of Forestry》 2018年第4期500-531,共32页
Individual tree detection (ITD) and the area-based approach (ABA) are combined to generate tree-lists using airborne LiDAR data. ITD based on the Canopy Height Model (CHM) was applied for overstory trees, while ABA ba... Individual tree detection (ITD) and the area-based approach (ABA) are combined to generate tree-lists using airborne LiDAR data. ITD based on the Canopy Height Model (CHM) was applied for overstory trees, while ABA based on nearest neighbor (NN) imputation was applied for understory trees. Our approach is intended to compensate for the weakness of LiDAR data and ITD in estimating understory trees, keeping the strength of ITD in estimating overstory trees in tree-level. We investigated the effects of three parameters on the performance of our proposed approach: smoothing of CHM, resolution of CHM, and height cutoff (a specific height that classifies trees into overstory and understory). There was no single combination of those parameters that produced the best performance for estimating stems per ha, mean tree height, basal area, diameter distribution and height distribution. The trees in the lowest LiDAR height class yielded the largest relative bias and relative root mean squared error. Although ITD and ABA showed limited explanatory powers to estimate stems per hectare and basal area, there could be improvements from methods such as using LiDAR data with higher density, applying better algorithms for ITD and decreasing distortion of the structure of LiDAR data. Automating the procedure of finding optimal combinations of those parameters is essential to expedite forest management decisions across forest landscapes using remote sensing data. 展开更多
关键词 tree-List Generation Individual tree DETECTION Nearest neighbor IMPUTATION Parameter Sensitivity AIRBORNE LiDAR
下载PDF
一种改进的ZigBee网络Cluster-Tree路由算法 被引量:15
6
作者 李刚 陈俊杰 葛文涛 《测控技术》 CSCD 北大核心 2009年第9期52-55,共4页
针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法... 针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法的基本思想:如果选择邻居节点的路由开销与原算法相比更小,则会选择邻居节点作为下一跳。仿真结果表明,该算法可以减少约30%的路由开销。 展开更多
关键词 ZIGBEE网络 Cluster—tree算法 邻居表 路由开销
下载PDF
在游戏中利用邻域特性扩展的kd-tree及其查找算法 被引量:1
7
作者 徐建民 李欢 刘博宁 《计算机科学》 CSCD 北大核心 2011年第3期257-262,共6页
处理场景中数量庞大的各种对象间的交互是游戏的一类主要计算工作。将kd-tree用于组织场景,提高了这类计算的效率。传统算法采用树的层次遍历方式进行查找,处理跨节点情况时性能下降明显。提出了邻域特性概念以扩展传统kd-tree结构,增... 处理场景中数量庞大的各种对象间的交互是游戏的一类主要计算工作。将kd-tree用于组织场景,提高了这类计算的效率。传统算法采用树的层次遍历方式进行查找,处理跨节点情况时性能下降明显。提出了邻域特性概念以扩展传统kd-tree结构,增添了树节点间的平面邻接关系,且考虑了游戏对kd-tree的一些限定,设计了从起始节点向四周扩展的查找算法。经分析与实验证明,新算法比传统算法有约40%的性能提升且更稳定。 展开更多
关键词 邻域特性 KD-tree 查找 场景分割 游戏
下载PDF
基于Max-tree的连通区域标记新算法 被引量:10
8
作者 章德伟 蒲晓蓉 章毅 《计算机应用研究》 CSCD 北大核心 2006年第8期168-170,共3页
采用灰度图像创建Max-tree的基本思想,提出一种新的二值图像连通区域标记算法。该算法主要采用8-邻域搜索及排序队列方式实现,通过一次扫描二值图像即可完成连通区域标记。提出一种新的8-邻域搜索策略,可以将邻域搜索次数由八次减少到... 采用灰度图像创建Max-tree的基本思想,提出一种新的二值图像连通区域标记算法。该算法主要采用8-邻域搜索及排序队列方式实现,通过一次扫描二值图像即可完成连通区域标记。提出一种新的8-邻域搜索策略,可以将邻域搜索次数由八次减少到平均四次以下,从而提高了系统效率。此外,还给出一种排序队列的快速实现方法,并将其应用到标记算法中。而且,该算法的运行时间仅与待标记图像的大小有关,与连通区数目和图像内容无关。该算法已应用于海藻图像识别,实验结果表明该算法是快速、高效的。 展开更多
关键词 Max-tree 连通区域标记 8-邻域搜索 排序队列
下载PDF
结合K均值聚类和KD-Tree搜索的快速分形编码方法 被引量:6
9
作者 陈作平 叶正麟 +1 位作者 赵红星 郑红婵 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第7期965-970,共6页
利用部分失真搜索求解传统K均值聚类算法中的最近邻搜索问题,显著地减少了传统算法的乘法次数,从而提高了聚类速度;然后用改进后的聚类算法来加速分形编码:首先将定义域块聚类并为每个类建立一棵KD-Tree,编码时对每个值域块先后用部分... 利用部分失真搜索求解传统K均值聚类算法中的最近邻搜索问题,显著地减少了传统算法的乘法次数,从而提高了聚类速度;然后用改进后的聚类算法来加速分形编码:首先将定义域块聚类并为每个类建立一棵KD-Tree,编码时对每个值域块先后用部分失真搜索与近似最近邻搜索得到与其距离最近的若干KD-Tree及其上的若干最近邻,而其最优匹配块即由后者产生.实验结果表明,相对于全局搜索,该方法能大幅度地提高编码速度和较大地提高压缩比,而解码质量只有很小的下降;相对于同类方法,在相同压缩比下有更好的加速效果和解码质量. 展开更多
关键词 分形图像压缩 K均值聚类 部分失真搜索 KD-tree 近似最近邻搜索
下载PDF
ball tree优化的自动驾驶仿真测试场景生成方法 被引量:1
10
作者 秦琴 谷文军 《计算机应用研究》 CSCD 北大核心 2023年第9期2781-2784,2791,共5页
基于场景的仿真测试方法可以有效加速自动驾驶汽车的测试进程,但是传统的采样方法面对高维度采样空间时无法维持高效性,提出了一种ball tree优化的仿真测试场景采样方法,并基于Carla模拟器构建了仿真测试场景自动化生成框架验证算法的... 基于场景的仿真测试方法可以有效加速自动驾驶汽车的测试进程,但是传统的采样方法面对高维度采样空间时无法维持高效性,提出了一种ball tree优化的仿真测试场景采样方法,并基于Carla模拟器构建了仿真测试场景自动化生成框架验证算法的有效性。分别使用随机采样方法、基于KD tree结构的最近邻采样方法与基于ball tree结构的最近邻采样方法进行场景参数采样,并生成不同天气要素下的仿真测试场景进行验证。最后将仿真过程与人工方法进行对比。结果表明,提出方法相对于人工方法具有11.38倍场景制作速度的提升,且相对于KD tree结构的采样方法的场景生成速度提升了27.97%。 展开更多
关键词 自动驾驶 场景生成 最近邻算法 ball tree CARLA
下载PDF
ZigBee中改进的Cluster-Tree路由算法 被引量:10
11
作者 谢川 《计算机工程》 CAS CSCD 北大核心 2011年第7期115-117,共3页
针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法... 针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法能有效提高数据发送成功率,减少源节点与目标节点间的跳数,降低端到端的报文传输时延,提高网络的使用价值。 展开更多
关键词 ZIGBEE网络 路由算法 Cluster-tree算法 AODVjr算法 邻居表
下载PDF
空间网络数据库中基于M-tree索引的反最近邻查询算法
12
作者 朱彩云 金顺福 +2 位作者 刘国华 齐峰 李金才 《燕山大学学报》 CAS 2009年第2期135-140,共6页
欧式空间中的反最近邻查询算法不适用于空间网络环境,故采用任意度量空间中的M-tree索引结构,进行空间网络数据库中的反最近邻查询处理。首先通过预计算的方法得到网络距离信息,依据此距离信息,对空间网络对象建立M-tree索引结构。然后... 欧式空间中的反最近邻查询算法不适用于空间网络环境,故采用任意度量空间中的M-tree索引结构,进行空间网络数据库中的反最近邻查询处理。首先通过预计算的方法得到网络距离信息,依据此距离信息,对空间网络对象建立M-tree索引结构。然后,给出并证明了M-tree中间结点修剪定理,提出一种适用于空间网络环境的反最近邻查询算法。最后实验验证了该算法的有效性。 展开更多
关键词 空间网络数据库 最近邻 反最近邻 M-tree
下载PDF
基于R^*-tree的散乱点云截面数据获取算法
13
作者 孙殿柱 范志先 +1 位作者 朱昌志 田中朝 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2010年第4期464-468,共5页
为快速准确地获取散乱点云的截面数据,以较少数据准确表达模型信息,提出一种截面数据获取算法.采用R*-tree建立点云的动态空间索引结构,基于该结构快速准确获取截面邻域数据,依据该数据与截平面的位置关系将邻域数据分为正负两个邻域,... 为快速准确地获取散乱点云的截面数据,以较少数据准确表达模型信息,提出一种截面数据获取算法.采用R*-tree建立点云的动态空间索引结构,基于该结构快速准确获取截面邻域数据,依据该数据与截平面的位置关系将邻域数据分为正负两个邻域,通过对两邻域数据点配对连线与截平面求交获取截面数据,并采用最小生成树算法对其排序,最终得到有序的截面数据.结果表明,该算法数据适应性强,截面数据获取精度高,运行速度快,且能够以较少数据准确表达模型型面特征. 展开更多
关键词 散乱点云 R*-tree 截面邻域数据 截面数据获取 最小生成树
下载PDF
一种基于数据空间自适应规则网格划分的Skd-tree最近邻算法 被引量:1
14
作者 王荣秀 王波 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第6期147-155,共9页
针对现有kd-tree KNN算法的不足,提出了一种基于规则数据空间网格划分的Skdtree KNN算法。该树形结构把数据置于空间网格内部,能更好地利用数据的空间分布特性,可以在更小的范围内对被查询数据定位,有效避免对部分无关数据的计算或回溯... 针对现有kd-tree KNN算法的不足,提出了一种基于规则数据空间网格划分的Skdtree KNN算法。该树形结构把数据置于空间网格内部,能更好地利用数据的空间分布特性,可以在更小的范围内对被查询数据定位,有效避免对部分无关数据的计算或回溯;同时,为了适应网格空间的规则性,算法中采用了超方体而非超球体来查询局域空间中的最优结果,避免了空间异构带来的缺点。数字实验的结果证明:Skd-tree KNN比kd-tree KNN具备更好的索引定位精度、更少的无关数据回溯和计算、更短的查询时间,尤其适用于数据样本较大或高维度数据的最近邻查询。 展开更多
关键词 最近邻算法 数据索引 Skd-tree KNN 查询超体
下载PDF
基于KD-Tree搜索和SURF特征的图像匹配算法研究 被引量:33
15
作者 杜振鹏 李德华 《计算机与数字工程》 2012年第2期96-98,126,共4页
针对图像匹配时进行特征检测和匹配的搜索时间长的问题,文章研究了基于KD-Tree搜索和SURF特征的图像匹配算法。该算法首先提取得到图像的SURF特征并生成特征描述向量,然后为这些特征描述向量建立KD-Tree索引,最后通过计算每个特征点的... 针对图像匹配时进行特征检测和匹配的搜索时间长的问题,文章研究了基于KD-Tree搜索和SURF特征的图像匹配算法。该算法首先提取得到图像的SURF特征并生成特征描述向量,然后为这些特征描述向量建立KD-Tree索引,最后通过计算每个特征点的与其距离最近的若干个KD-Tree上的最近邻点,完成特征匹配工作。实验结果表明,与SIFT算法相比,SURF算法进行特征检测的速度要快2~3倍;与全局最近邻搜索相比,基于KD-Tree索引的近似最近邻搜索大大减少了计算量,较大地提高了SURF算法的匹配速度。 展开更多
关键词 KD-tree SURF 图像匹配 特征提取 近似最近邻搜索
下载PDF
道路网中基于RRN-Tree的CKNN查询
16
作者 孙海龙 王霓虹 《计算机工程》 CAS CSCD 2014年第6期306-311,共6页
现有针对基于道路网络的CKNN查询研究,主要是将道路网络以路段和节点的形式进行建模,转化成基于内存的有向/无向图,该模型存在2个问题:一个是道路网络中路段数据量大,导致索引结构分支过多、移动对象更新频繁;另一个是图表示方... 现有针对基于道路网络的CKNN查询研究,主要是将道路网络以路段和节点的形式进行建模,转化成基于内存的有向/无向图,该模型存在2个问题:一个是道路网络中路段数据量大,导致索引结构分支过多、移动对象更新频繁;另一个是图表示方法不能很好地处理十字路口转向、U型转弯等交通规则。针对此问题,提出道路网中基于RRN—Tree的移动对象CKNN查询算法,包括索引结构设计和移动对象查询算法设计,采用路线对道路网建模,基于网络边扩展方式,实现复杂条件下的道路网络CKNN查询。实验结果表明,在各种网络密度和兴趣点对象分布密度下,与经典的IMA/GMA算法相比,基于RRN—Tree索引方法的查询性能提高1.5倍-2.13倍。 展开更多
关键词 道路网络 连续K最近邻查询 RRN树 扩展网络边 K近邻监测区 兴趣点分布密度
下载PDF
基于机器学习的冠心病风险预测模型构建与比较
17
作者 岳海涛 何婵婵 +3 位作者 成羽攸 张森诚 吴悠 马晶 《中国全科医学》 CAS 北大核心 2025年第4期499-509,共11页
背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目... 背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目的探索冠心病的影响因素,通过使用2种平衡数据的方法,基于5种算法建立冠心病风险相关的预测模型,比较这5种模型对冠心病风险的预测价值。方法基于2021年美国国家行为风险因素监测系统(BRFSS)横断面调查数据筛选出112606名研究对象的健康相关风险行为、慢性健康状况等24个变量信息,结局指标为自我报告是否患有冠心病并据此分为冠心病组和非冠心病组。通过进行单因素分析和逐步Logistic回归分析探索冠心病发生的影响因素并筛选出纳入预测模型的变量。随机抽取112606名受访者的10%(共计11261名),以8∶2的比例随机划分为训练与测试的数据集,采用随机过采样和合成少数过采样技术(SMOTE)两种过采样的方法处理不平衡数据,基于k最邻近算法(KNN)、Logistic回归、支持向量机(SVM)、决策树和XGBoost算法分别建立冠心病预测模型。结果两组年龄、性别、BMI、种族、婚姻状态、教育水平、收入水平、家里有几个孩子、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者、过去30 d内是否有体育锻炼、心理健康状况以及自我健康评价比较,差异有统计学意义(P<0.05)。逐步Logistic回归分析结果显示:年龄、性别、BMI、种族、教育水平、收入水平、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者以及自我健康评价为冠心病的影响因素(P<0.05)。风险模型构建的分析结果显示:k最邻近算法、Logistic回归、支持向量机、决策树和XGBoost采用SMOTE处理不平衡数据的总体分类精度分别为59.2%、67.4%、66.2%、69.2%和85.9%,召回率分别为75.2%、71.4%、70.5%、62.9%和34.8%,精确度分别为15.4%、18.2%、17.5%、17.6%和28.7%,F值分别为0.256、0.290、0.280、0.275和0.315,受试者工作特征曲线下面积分别为0.80、0.78、0.72、0.72和0.82;采用随机过采样处理不平衡数据的总体分类精度分别为62.5%、68.5%、69.0%、60.2%和70.1%,召回率分别为70.0%、69.5%、71.9%、69.0%和67.6%;精确度分别为15.8%、18.4%、19.1%、14.8%和19.0%,F值分别为0.258、0.291、0.302、0.244和0.297,受试者工作特征曲线下面积分别为0.80、0.77、0.72、0.72和0.83。结论本研究不仅确认了已知冠心病的影响因素,还发现了自我健康评价水平、收入水平和教育水平对冠心病具有潜在影响。在使用2种数据平衡方法后,5种算法的性能显著提高。其中XGBoost模型表现最佳,可作为未来优化冠心病预测模型的参考。此外,鉴于XGBoost模型的优异性能以及逐步Logistic回归的操作便捷和可解释性,推荐在冠心病风险预测模型中结合使用数据平衡后的XGBoost和逐步Logistic回归分析。 展开更多
关键词 冠心病 机器学习 风险预测模型 LOGISTIC回归 k最邻近算法 支持向量机 决策树 XGBoost
下载PDF
基于改进Kd-Tree构建算法的k近邻查询 被引量:8
18
作者 陈晓康 刘竹松 《广东工业大学学报》 CAS 2014年第3期119-123,共5页
k近邻查询算法是查询大规模空间数据的常用算法之一,使用Kd-Tree先构建大规模空间数据的索引,然后对搜索空间进行层次划分,再进行k近邻查询,能保证搜索的效率.但是,传统的Kd-Tree构建有两个缺点:使用测试数据点进行k近邻查询每次都需要... k近邻查询算法是查询大规模空间数据的常用算法之一,使用Kd-Tree先构建大规模空间数据的索引,然后对搜索空间进行层次划分,再进行k近邻查询,能保证搜索的效率.但是,传统的Kd-Tree构建有两个缺点:使用测试数据点进行k近邻查询每次都需要回溯到根节点,影响了查询的效率;Kd-Tree使用split域对空间进行层次划分,空间划分为立方体(二维数据表现为矩形),多边形空间在相交判断时会出现没必要进行数据距离比较的多余空间,这样会影响查询的效率.针对这两个缺点,本文提出了相应的改进算法——RB算法.实验结果证明,该算法比传统的KD算法拥有更高的查询效率.本文的主要贡献有两点:(1)构建一种快速创建Kd-Tree索引来支持KNN算法进行大规模数据的分类查询操作.(2)改进传统的Kd-Tree索引构建方法,提出新的改进算法RB算法,提高KNN算法查询的效率. 展开更多
关键词 K近邻查询 KD树 空间数据 多边形空间 层次划分
下载PDF
ZigBee网络Cluster-Tree优化路由算法研究 被引量:5
19
作者 曹越 胡方明 党妮 《单片机与嵌入式系统应用》 2012年第10期4-7,共4页
通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优... 通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优化算法能够有效地减小路由跳数,缩短传输时延,减少网络中死亡节点的数量,提高数据传送的成功率。 展开更多
关键词 ZigBee 路由算法 Cluster—tree+AODVjr 邻居表 分组
下载PDF
基于P-trees kNN算法的毒物分类方法
20
作者 曾志浩 胡积平 《软件》 2012年第4期105-107,111,共4页
中毒是一种发生机率较大、对人体危害大的病症,而及时明确诊断,正确、规范的治疗既是抢救成功的关键,又是至今没有很好解决的难题。毒物层出不穷,基层急救医生的毒物知识和中毒抢救知识又明显不足,因此临床急需一种辅助系统以帮助各级... 中毒是一种发生机率较大、对人体危害大的病症,而及时明确诊断,正确、规范的治疗既是抢救成功的关键,又是至今没有很好解决的难题。毒物层出不穷,基层急救医生的毒物知识和中毒抢救知识又明显不足,因此临床急需一种辅助系统以帮助各级急救医生提高中毒诊治水平及中毒抢救成功率。利用不同中毒表现对应不同毒物的权值向量构成"中毒表现加权向量表",并将它作为训练数据集的属性值。构建中毒表现加权向量表的P树,并选择HOBBit距离作为距离度量标准,运用P-trees kNN分类算法进行毒物分类。将该方法应用到毒物分类系统中,运行效果良好。 展开更多
关键词 K近邻算法 中毒分析系统 中毒表现加权向量表 P-树
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部