A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influ...A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influence of explanatory variables describing soil,climate and agricultural management in structuring the variation of PPNs community composition.A total of 218 sampling sites were surveyed and 84 PPN species belonging to 32 genera were identified based of an integrative taxonomic approach.PPN species considered as potential limiting factors in Prunus production,such as Meloidogyne arenaria,M.incognita,M.javanica,Pratylenchus penetrans and P.vulnus,were identified in this survey.Seven soil physico-chemical(C,Mg,N,Na,OM,P,pH and clay,loamy sand and sandy loam texture classes),four climate(Bio04,Bio05,Bio13 and Bio14)and four agricultural management variables(grove-use history less than 10 years,irrigation,apricot seedling rootstock,and Montclar rootstock)were identified as the most influential variables driving spatial patterns of PPNs communities.In particular,younger plantations showed higher values for species richness and diversity indices than groves cultivated for more than 20 years with Prunus spp.Our study increases the knowledge of the distribution and prevalence of PPNs associated with Prunus rhizosphere,as well as on the influence of explanatory variables driving the spatial structure PPNs communities,which has important implications for the successful design of sustainable management strategies in the future in this agricultural system.展开更多
Parasitic nematodes have been reported as one of the major constraints to soybean production worldwide. The majority of nematodes are so-called “free-living” and feed mainly on bacteria, fungi, protozoa and other ne...Parasitic nematodes have been reported as one of the major constraints to soybean production worldwide. The majority of nematodes are so-called “free-living” and feed mainly on bacteria, fungi, protozoa and other nematodes. In Burkina Faso, the presence of parasitic nematodes has been reported in crops such as rice and sorghum. The objective of this study was to identify the genera and species of nematodes associated with soybean production in Burkina Faso. Investigations were carried out on 24 genotypes of a medium-maturity group of soybean at the Farako-Ba research station. Soil samples were taken from the trial soil before its installation. At harvest, soil samples with roots were taken from each genotype in the elementary plots. The composite sample is represented by 4 lots of soil samples with roots. Extractions and counts of nematodes were performed on the different lots. In total, 7 genera of plant-parasitic nematodes associated with soybean were identified. Among these genera, Pratylenchus (100% of infected genotypes), Helicotylenchus (97.28%) and Scutellonema (94.44%) were the most prevalent in terms of frequency and abundance. Some soybean genotypes were less susceptible to the genus Pratylenchus is known to be highly pathogenic in soybean. These were mainly the genotypes TGX2025-10E, TGX2023-3E and TGX2025-14E.展开更多
Free living marine nematodes were sampled from two sandy beaches in Dalian City,in December of 2015,and April,July,and October of 2016.The spatial and seasonal variations of marine nematode species diversity(based on ...Free living marine nematodes were sampled from two sandy beaches in Dalian City,in December of 2015,and April,July,and October of 2016.The spatial and seasonal variations of marine nematode species diversity(based on species abundance dataset)and functional diversity(based on functional traits dataset:feeding types and life history strategies)were investigated to understand the environmental drivers and how they respond to specific environmental variations.Sediment granularity was revealed to be the main environmental factor causing spatial differences in nematode diversity indices between the two beaches.Species diversity indices,namely species number,Margalef index,Shannon-Wiener diversity index(H’),were higher in fine-grained sediments,while the functional diversity indices,including functional evenness,functional dispersion,and Rao’s quadratic entropy index(RaoQ),were higher in coarse-grained sediments.Nematode species diversity indices also fluctuated with seasonal variations of temperature,dissolved oxygen,pH,salinity,and sediment chlorophyll-a within the study beaches.However,functional diversity indices did not show significant seasonal variations and exhibited weak correlation with the studied environmental variables.Overall,the functional diversity indices were negatively correlated with the species diversity indices,suggesting an inconsistent response to environmental changes.A decrease in nematode species diversity in coarse sands,accompanied by an increase in functional diversity,can be regarded as an early warning signal of environment disturbance.If more biological traits are involved in calculating functional diversity indices,it will be helpful for the future study of the internal connections of species diversity and functional diversity.展开更多
为明确番茄接种根结线虫后基因种类和表达量在转录水平的变化规律,利用RNA-seq对未接种及接种南方根结线虫2龄幼虫6、12、24和48 h的番茄进行转录组测序,探究番茄响应南方根结线虫侵染相关的关键转录因子,并采用qRT-PCR方法对测序结果...为明确番茄接种根结线虫后基因种类和表达量在转录水平的变化规律,利用RNA-seq对未接种及接种南方根结线虫2龄幼虫6、12、24和48 h的番茄进行转录组测序,探究番茄响应南方根结线虫侵染相关的关键转录因子,并采用qRT-PCR方法对测序结果进行验证。结果显示,接种南方根结线虫后6、12、24和48 h分别有350、390、580、1154个基因差异表达,其中差异表达转录因子分别为11、11、19、50个。这些转录因子属于15个家族,其中数量最多的为MYB家族和bHLH家族(均为20个),其次是ERF家族19个、WRKY家族15个、bZIP家族9个。南方根结线虫侵染过程差异表达最明显的主要为ERF、WRKY、MYB和bHLH家族转录因子,其中Solyc03g005520、Solyc02g094270和Solyc09g066350显著上调,接种后48 h log2FC分别为9.16、6.49和6.33;Solyc02g079280、Solyc12g100140和Solyc04g072460显著下调,接种后48 h log2FC分别为-2.60、-1.72和-1.70。qRT-PCR验证结果显示,6个随机选取基因的表达趋势与测序结果基本一致。以上结果表明,ERF、WRKY、MYB和bHLH家族转录因子可能参与番茄与南方根结线虫互作,在番茄响应南方根结线虫侵染反应中发挥着重要的调控作用。展开更多
基金supported by the grant RTI2018-095925-A-100,“Interactions among soil microorganisms as a tool for the sustainability of the resistance of rootstocks fruit trees against plant-parasitic nematodes”funded by Ministry of Science and Innovation(MCIN)and by European Regional Development Fund(ERDF)“A way of making Europe”The first author is a recipient of grant(PRE2019-090206)funded by European Social Fund(ESF)“Investing in your future”。
文摘A wide survey was conducted to study plant-parasitic nematodes(PPNs)associated with Prunus groves in Spain.This research aimed to determine the prevalence and distribution of PPNs in Prunus groves,as well as the influence of explanatory variables describing soil,climate and agricultural management in structuring the variation of PPNs community composition.A total of 218 sampling sites were surveyed and 84 PPN species belonging to 32 genera were identified based of an integrative taxonomic approach.PPN species considered as potential limiting factors in Prunus production,such as Meloidogyne arenaria,M.incognita,M.javanica,Pratylenchus penetrans and P.vulnus,were identified in this survey.Seven soil physico-chemical(C,Mg,N,Na,OM,P,pH and clay,loamy sand and sandy loam texture classes),four climate(Bio04,Bio05,Bio13 and Bio14)and four agricultural management variables(grove-use history less than 10 years,irrigation,apricot seedling rootstock,and Montclar rootstock)were identified as the most influential variables driving spatial patterns of PPNs communities.In particular,younger plantations showed higher values for species richness and diversity indices than groves cultivated for more than 20 years with Prunus spp.Our study increases the knowledge of the distribution and prevalence of PPNs associated with Prunus rhizosphere,as well as on the influence of explanatory variables driving the spatial structure PPNs communities,which has important implications for the successful design of sustainable management strategies in the future in this agricultural system.
文摘Parasitic nematodes have been reported as one of the major constraints to soybean production worldwide. The majority of nematodes are so-called “free-living” and feed mainly on bacteria, fungi, protozoa and other nematodes. In Burkina Faso, the presence of parasitic nematodes has been reported in crops such as rice and sorghum. The objective of this study was to identify the genera and species of nematodes associated with soybean production in Burkina Faso. Investigations were carried out on 24 genotypes of a medium-maturity group of soybean at the Farako-Ba research station. Soil samples were taken from the trial soil before its installation. At harvest, soil samples with roots were taken from each genotype in the elementary plots. The composite sample is represented by 4 lots of soil samples with roots. Extractions and counts of nematodes were performed on the different lots. In total, 7 genera of plant-parasitic nematodes associated with soybean were identified. Among these genera, Pratylenchus (100% of infected genotypes), Helicotylenchus (97.28%) and Scutellonema (94.44%) were the most prevalent in terms of frequency and abundance. Some soybean genotypes were less susceptible to the genus Pratylenchus is known to be highly pathogenic in soybean. These were mainly the genotypes TGX2025-10E, TGX2023-3E and TGX2025-14E.
基金This study was supported by the National Natural Science Foundation of China(Nos.41976100,41576153).
文摘Free living marine nematodes were sampled from two sandy beaches in Dalian City,in December of 2015,and April,July,and October of 2016.The spatial and seasonal variations of marine nematode species diversity(based on species abundance dataset)and functional diversity(based on functional traits dataset:feeding types and life history strategies)were investigated to understand the environmental drivers and how they respond to specific environmental variations.Sediment granularity was revealed to be the main environmental factor causing spatial differences in nematode diversity indices between the two beaches.Species diversity indices,namely species number,Margalef index,Shannon-Wiener diversity index(H’),were higher in fine-grained sediments,while the functional diversity indices,including functional evenness,functional dispersion,and Rao’s quadratic entropy index(RaoQ),were higher in coarse-grained sediments.Nematode species diversity indices also fluctuated with seasonal variations of temperature,dissolved oxygen,pH,salinity,and sediment chlorophyll-a within the study beaches.However,functional diversity indices did not show significant seasonal variations and exhibited weak correlation with the studied environmental variables.Overall,the functional diversity indices were negatively correlated with the species diversity indices,suggesting an inconsistent response to environmental changes.A decrease in nematode species diversity in coarse sands,accompanied by an increase in functional diversity,can be regarded as an early warning signal of environment disturbance.If more biological traits are involved in calculating functional diversity indices,it will be helpful for the future study of the internal connections of species diversity and functional diversity.
文摘为明确番茄接种根结线虫后基因种类和表达量在转录水平的变化规律,利用RNA-seq对未接种及接种南方根结线虫2龄幼虫6、12、24和48 h的番茄进行转录组测序,探究番茄响应南方根结线虫侵染相关的关键转录因子,并采用qRT-PCR方法对测序结果进行验证。结果显示,接种南方根结线虫后6、12、24和48 h分别有350、390、580、1154个基因差异表达,其中差异表达转录因子分别为11、11、19、50个。这些转录因子属于15个家族,其中数量最多的为MYB家族和bHLH家族(均为20个),其次是ERF家族19个、WRKY家族15个、bZIP家族9个。南方根结线虫侵染过程差异表达最明显的主要为ERF、WRKY、MYB和bHLH家族转录因子,其中Solyc03g005520、Solyc02g094270和Solyc09g066350显著上调,接种后48 h log2FC分别为9.16、6.49和6.33;Solyc02g079280、Solyc12g100140和Solyc04g072460显著下调,接种后48 h log2FC分别为-2.60、-1.72和-1.70。qRT-PCR验证结果显示,6个随机选取基因的表达趋势与测序结果基本一致。以上结果表明,ERF、WRKY、MYB和bHLH家族转录因子可能参与番茄与南方根结线虫互作,在番茄响应南方根结线虫侵染反应中发挥着重要的调控作用。