The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized...(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized by TG-DTA, XRD, FT-IR, ICP and TEM, respectively. The grain sizes were calculated by the Scherrer's formula using the full width at half maximum (FWHM) of YAG (420) crystal plane diffraction lines. The study focused on crystallization of ceramics at different heat treatment temperatures. The experimental results show that crystallizing temperature of YAG is 850 ℃, and the intermediate crystal phase YAP, appearing during heat treatment, transforms to YAG cubic crystal phase at the temperature of 1 050℃. The particle size of the powders synthesized by LCS is nano-sized. With the temperature increasing, the mean grain sizes raise, the stand deviations keep almost at the value of 2.0 and the lattice parameters decrease. The grains mainly grow by grain boundary diffusion. The lattice parameter expansion is caused by an increase of the repulsive dipolar interactions on surfaces of crystallites,展开更多
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.
基金the Chinese Education Ministry Excellent Teacher Foundation(KB20026)
文摘(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized by TG-DTA, XRD, FT-IR, ICP and TEM, respectively. The grain sizes were calculated by the Scherrer's formula using the full width at half maximum (FWHM) of YAG (420) crystal plane diffraction lines. The study focused on crystallization of ceramics at different heat treatment temperatures. The experimental results show that crystallizing temperature of YAG is 850 ℃, and the intermediate crystal phase YAP, appearing during heat treatment, transforms to YAG cubic crystal phase at the temperature of 1 050℃. The particle size of the powders synthesized by LCS is nano-sized. With the temperature increasing, the mean grain sizes raise, the stand deviations keep almost at the value of 2.0 and the lattice parameters decrease. The grains mainly grow by grain boundary diffusion. The lattice parameter expansion is caused by an increase of the repulsive dipolar interactions on surfaces of crystallites,