Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in ...Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in this paper, we have revealed the temporo-spatial evolution law of the basin's fluid system and discussed its ore-forming effects by simulating and analyzing the distribution of ore-forming elements, the fluid thermodynamics and dynamics of evolution processes of this basin. The results show that Late Paleozoic ore-forming fluid systems of the Yuebei Basin include four basic types as follows. (1) The sea floor volcanic-exhalation system developed during the rapid basin slip-extension stage in the Mid-Late Devonian, which affected the Dabaoshan region. It thus formed the Dabaoshan-type Cu-Pb-Zn-Fe sea floor volcanic-exhalation sedimentary deposits. (2) The compaction fluid system developed during the stable spreading and thermal subsidence-compression stage of the basin in the Mid-Late Devonian. The range of its effects extended all over the whole basin. It resulted in filling-metasomatic deposits, such as the Hongyan-type pyrite deposits and pyrite sheet within the Fankou-type Cu-Pb-Zn-S deposits. (3) The hot water circulation system of sea floor developed during the stage of basin uplifting and micro-aulacogen from the late Late Carboniferous to Middle Carboniferous. The range of its effects covered the Fankou region. It thus formed MVT deposits, such as the main orebody of the Fankou-type Pb-Zn-S deposits. (4) The gravity fluid system developed during the stage of fold uplifting and the basin closed from Middle Triassic to Jurassic, forming groundwater hydrothermal deposits, e.g. the veinlet Pb-Zn-calcite orebodies of the Fankou-type Pb-Zn- S deposits. Migration and concentration of the ore-forming fluids were constrained by the state of temporo-spatial distribution of its fluid potential. Growth faults not only converged the fluids and drove them to move upwards, but also the fluids often crossed the faults to the edges of the basin at the bottom of these faults and the lithologic interfaces, and even migrated to the basin's edges from top to bottom along the faults, which may be one of the basic reasons for the stratabound deposits to cluster mainly along the contemporaneous faults on the inner border of the basin. The superposed mineralization resulting from the multi-stage activity of contemporaneous faults and ore-forming fluid systems in the basin may be one of the key factors for forming superlarge ore deposits.展开更多
This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu...This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.展开更多
This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints). The dir...This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints). The direction of the maximum principal stress axes is interpreted to be NW-SE (about 325°), and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index Rt is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleo- zoic.展开更多
The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began ...The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.展开更多
As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tecto...As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics--and its influence on the deep Earth and climate-it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of 'full-plates' (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma ~60% of the lithosphere is missing and re- constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these 'continental' re- constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo- dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410-250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.展开更多
The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the...The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the Central Tianshan Arc Terrane. We performed a detailed geochronological and geochemical study of the Baleigong granites to better constrain the nature of collisional processes in the Southwest Tianshan Orogen. The LA-ICP-MS U-Pb zircon isotopic analyses indicate that magmatism commenced in the early Permian(~282 Ma). The granite samples, which are characterized by high contents of SiO2(67.68-69.77 wt%) and Al2O3(13.93-14.76 wt%), are alkali-rich and Mg-poor, corresponding to the high-K calc-alkaline series. The aluminum saturation index(A/CNK) ranges from 0.93 to 1.02, indicating a metaluminous to slightly peraluminous composition. Trace element geochemistry shows depletions in Nb, Ta, and Ti, a moderately negative Eu anomaly(δEu=0.40-0.56), enrichment in LREE, and depletion in HREE((La/Yb)N=7.46-11.78). These geochemical signatures are characteristic of an I-type granite generated from partial melting of a magmatic arc. The I-type nature of the Baleigong granites is also supported by the main mafic minerals being Fe-rich calcic hornblende and biotite. We suggest that the high-K, calc-alkaline I-type granitic magmatism was generated by partial melting of the continental crust, possibly triggered by underplating by basaltic magma. These conditions were likely achieved in a collisional tectonic setting, thus supporting the suggestion that closure of the South Tianshan Ocean was completed prior to the Permian and was followed(in the late Paleozoic) by collision between the Tarim Block and the Central Tianshan Arc Terrane.展开更多
Over the last years, the Simao region, southwestern Yunnan, China, turned out to be a very promising target to elucidate plate tectonic processes around the Permian Triassic boundary within the Tethyan domain of Asi...Over the last years, the Simao region, southwestern Yunnan, China, turned out to be a very promising target to elucidate plate tectonic processes around the Permian Triassic boundary within the Tethyan domain of Asia. New data from this area reveal that Upper Paleozoic compressional deformations occurred along the Lancangjiang and in areas to the east. Along Lancangjiang, an angular unconformity is exposed, which separates quartz phyllites—formed during a Carboniferous tectono metamorphic event—from Triassic red beds to roofing rhyolites. The acidic volcanics were often said to be remnants of a volcanic arc that was active during the Triassic subduction and closure of an oceanic realm along the Lancangjiang zone. According to our new data, however, these volcanics indicate most probably an Upper Triassic stage of rifting. In the Yunxian anticline (NW of Simao), an angular unconformity of intra Permian age is exposed where Carboniferous to lower Middle Permian strata, which were deposited in a rather deep basin, are unconformably overlain by a shallow marine sequence of upper Middle to Upper Permian sediments. The angular unconformity is of the same age as the syn orogenous sediments first described and dated from the Phetchabun region in Thailand and hence a convincing argument for a Late Variscan orogeny forming an extensive zone of mountain building that can be traced through the central parts of mainland Southeast Asia.展开更多
The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermed...The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases) and NW-trending (mainly diabasic diorites) dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with eHf(t) values of -8.90 to 7.49 and -23.39 to -7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma), respectively. Geochemically these rocks are characterized by low TiO2 (0.91-1.73 wt.%) and MgO (3.04-7.96 wt.%), and high A1203 (12.5-16.60 wt.%) and K20 (0.60-3.63 wt.%). Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K), but depleted in HFSEs (Nb, Ta and Zr). The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional envi- ronment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.展开更多
The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the...The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the Taozao coalfield in Shandong Province, China, conclude that most sulfur (>75 %) in high-sulfur coal of Taiyuan Formation occurred as pyrite, in which many hazardous elements co-existed and their concentrations varied with their geological origin. The concentrations of hazardous elements in high-sulfur coals from Taiyuan Formation, composing mainly of Cu, As, U, Pb, Mo and Co, are much higher than those in the low-sulfur coals from Shanxi Formation and Shihezi Formation, because the influence of seawater during and after coal accumulation in Taiyuan Formation is stronger than those in Shanxi and Shihezi formations. Moreover, the element As is related to Fe, and both elements exist mainly in the form of pyrite. The element U is richer in the coal influenced by seawater. In addition, the coal affected by the magmatism contains more U, too. When high-sulfur coals are processed with heavy media washing to remove sulfur and minerals, the majority of hazardous elements will also be removed from the coals.展开更多
The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses...The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.展开更多
The widely-developed,mixed clastic-carbonate succession in the northern Qaidam Basin records the paleo-environment changes under the glacial activity during the Late Paleozoic icehouse period in the context of regiona...The widely-developed,mixed clastic-carbonate succession in the northern Qaidam Basin records the paleo-environment changes under the glacial activity during the Late Paleozoic icehouse period in the context of regional tectonic stability,however,the depositional environment and sequence stratigraphy characteristics of the mixed deposits is rarely reported and still not clear.Combined the latest drilling wells data,we analyzed the sedimentary and stratigraphic characterization of the mixed strata via detailed field outcrops and core observations and thin section microscopic observations and recognized three depositional systems,including progradational coastal system,incised valley system,and carbonate-dominated marine shelf system,and identified four third-order sequences,SQ1,SQ2,SQ3 and SQ4,consisting of LST,TST,and HST.The depositional environment is overall belonged to marine-continental transition context and shifted from marine to continental environment frequently,showing an evolutionary pattern from marine towards terrestrial-marine transition and then back into the marine environment again in the long-term,which was controlled by the regional tectonic subsidence and the high-frequency and large-amplitude sea-level changes due to the Late Paleozoic glacial activity.The result is of significance in understanding the evolution of the Qinghai-Tibet Plateau and the sedimentation-climate response.展开更多
The Qaidam basin is the largest intermountain basin inside Tibet, and is one of the three major petroliferous basins in western China. This study discussed the geothermal field and tectono-thermal evolution of the bas...The Qaidam basin is the largest intermountain basin inside Tibet, and is one of the three major petroliferous basins in western China. This study discussed the geothermal field and tectono-thermal evolution of the basin, in an effort to provide evidence for intracontinental or intraplate continental dynamics and basin dynamics, petroleum resources assessment, and to serve petroleum production.展开更多
Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zo...Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zones. This indicates that the late Paleozoic strata belong to continental margin deposits. According to the strong conformability of the sedimentary strata in the same continental margin and distinct differences among the three continental margins, three stratigraphical regions of the Jiamusi-Mongolia Stratigraphical Province are recognized along the northern, southern and eastern margins of the Jiamusi-Mongolia Block, named respectively as Xing'an Stratigraphical Region, Inner Mongolia grass-Songhua River Stratigraphical Region and Baoqing-Hunchun Stra- tigraphical Region. Due to the characteristics of continental margin deposits and active sediments, the strata can be correlated on the level of formation by the methods of analysing the rock association in the same stratigraphic region. Therefore, some revisions of the lithologieal formations of the late Paleozoic strata in northeastern China have been made, and a new chart of lithostratigraphic correlation has been proposed. Furthermore, the present stratigraphic framework is setting on the International Stratigraphic Chart on the level of stage, after comprehen- sive researches to lithostratigraphy, biostratigraphy and chronostratigraphy, especially the conodont biostratigra- phy and isotopic ages of volcanic rocks obtained in recent years.展开更多
We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terran...We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.展开更多
Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry...Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry of magmatic rocks further indicate that there were really a Late Paleozoic rift valley in Chabu\|Chasang area, and no so\|called Paleo\|Tethys suture zone existed there. The rift initially split in early Carboniferous, access the peak in Lower Permian, is closed and folded during Late Permian. The volcanic rocks composed of mainly basalts, a small amount of basaltic andesites and andesites, are zonally distributed, and occur alternately with flysch or flyschoid sandstones, slates, pebbled slates, radiolarian cherts and carbonate rocks. The sedimentary facies change rapidly toward both sides and show rapid deposits of proximal gravity flow.展开更多
This paper presents the results of geochronological(40Ar-39Ar,U-Pb SHRIMP Ⅱ),petrological and geochemical studies of the Late Paleozoic complexes of alkaline rocks(Zimovechinsky,Tuchinsky and Koma) located within the...This paper presents the results of geochronological(40Ar-39Ar,U-Pb SHRIMP Ⅱ),petrological and geochemical studies of the Late Paleozoic complexes of alkaline rocks(Zimovechinsky,Tuchinsky and Koma) located within the Vitim Plateau(the western part of the Mongol-Okhotsk Orogenic Belt).The rocks were formed at 310-280 Ma.It is coeval with Late Paleozoic magmatism within the Central Asian Orogenic Belt.The εNd(T) values show large variations from-2.1 to +3.3 as well as the initial Sr(I) isotopic ratios from 0.7042 to 0.7138,that demonstrate strong isotopic heterogeneity of the magmatic source.The geochemical characteristics of the rocks show pronounced positive Pb and negative Ti,Zr-Hf anomalies that can be explained by involvement of the subducted component in primary melts.The rocks intruded in a setting of extension at the active continental margin of the Siberian Craton during subduction of Mongol-Okhotsk oceanic crust under the Siberian Craton.展开更多
基金supported jointly by the Fostering Plan Fund for Beyond-Century Excellent Talent and the Key Project of Science and Technology Research of the Ministry of Education(No.03178)the National Natural Science Foundation of China(No.40172036 an d No.40272051).
文摘Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in this paper, we have revealed the temporo-spatial evolution law of the basin's fluid system and discussed its ore-forming effects by simulating and analyzing the distribution of ore-forming elements, the fluid thermodynamics and dynamics of evolution processes of this basin. The results show that Late Paleozoic ore-forming fluid systems of the Yuebei Basin include four basic types as follows. (1) The sea floor volcanic-exhalation system developed during the rapid basin slip-extension stage in the Mid-Late Devonian, which affected the Dabaoshan region. It thus formed the Dabaoshan-type Cu-Pb-Zn-Fe sea floor volcanic-exhalation sedimentary deposits. (2) The compaction fluid system developed during the stable spreading and thermal subsidence-compression stage of the basin in the Mid-Late Devonian. The range of its effects extended all over the whole basin. It resulted in filling-metasomatic deposits, such as the Hongyan-type pyrite deposits and pyrite sheet within the Fankou-type Cu-Pb-Zn-S deposits. (3) The hot water circulation system of sea floor developed during the stage of basin uplifting and micro-aulacogen from the late Late Carboniferous to Middle Carboniferous. The range of its effects covered the Fankou region. It thus formed MVT deposits, such as the main orebody of the Fankou-type Pb-Zn-S deposits. (4) The gravity fluid system developed during the stage of fold uplifting and the basin closed from Middle Triassic to Jurassic, forming groundwater hydrothermal deposits, e.g. the veinlet Pb-Zn-calcite orebodies of the Fankou-type Pb-Zn- S deposits. Migration and concentration of the ore-forming fluids were constrained by the state of temporo-spatial distribution of its fluid potential. Growth faults not only converged the fluids and drove them to move upwards, but also the fluids often crossed the faults to the edges of the basin at the bottom of these faults and the lithologic interfaces, and even migrated to the basin's edges from top to bottom along the faults, which may be one of the basic reasons for the stratabound deposits to cluster mainly along the contemporaneous faults on the inner border of the basin. The superposed mineralization resulting from the multi-stage activity of contemporaneous faults and ore-forming fluid systems in the basin may be one of the key factors for forming superlarge ore deposits.
基金the Program of China Geological Survey(grant No.1212011220649)
文摘This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.
基金supported by the National Natural Science Foundation of China Grant(Nos.40772121,40314141 and 40172066)China National Project 973(No.2009CB219302)
文摘This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints). The direction of the maximum principal stress axes is interpreted to be NW-SE (about 325°), and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index Rt is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleo- zoic.
文摘The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.
基金The European Research Council under the Euro-pean Union's Seventh Framework Programme(FP7/2007-2013)/ERC Advanced Grant Agreement Number 267631(Beyond Plate Tectonics)the Research Council of Norway through its Centres of Excellence funding scheme,project number 223272(CEED)are acknowledged for financial support
文摘As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics--and its influence on the deep Earth and climate-it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of 'full-plates' (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma ~60% of the lithosphere is missing and re- constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these 'continental' re- constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo- dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410-250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.U1403292, 41472196, 41502085, and 41902214)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAB05B04, 2018YFC0604005)the China Geological Survey Bureau (JYYWF20183702, JYYWF20180602)
文摘The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the Central Tianshan Arc Terrane. We performed a detailed geochronological and geochemical study of the Baleigong granites to better constrain the nature of collisional processes in the Southwest Tianshan Orogen. The LA-ICP-MS U-Pb zircon isotopic analyses indicate that magmatism commenced in the early Permian(~282 Ma). The granite samples, which are characterized by high contents of SiO2(67.68-69.77 wt%) and Al2O3(13.93-14.76 wt%), are alkali-rich and Mg-poor, corresponding to the high-K calc-alkaline series. The aluminum saturation index(A/CNK) ranges from 0.93 to 1.02, indicating a metaluminous to slightly peraluminous composition. Trace element geochemistry shows depletions in Nb, Ta, and Ti, a moderately negative Eu anomaly(δEu=0.40-0.56), enrichment in LREE, and depletion in HREE((La/Yb)N=7.46-11.78). These geochemical signatures are characteristic of an I-type granite generated from partial melting of a magmatic arc. The I-type nature of the Baleigong granites is also supported by the main mafic minerals being Fe-rich calcic hornblende and biotite. We suggest that the high-K, calc-alkaline I-type granitic magmatism was generated by partial melting of the continental crust, possibly triggered by underplating by basaltic magma. These conditions were likely achieved in a collisional tectonic setting, thus supporting the suggestion that closure of the South Tianshan Ocean was completed prior to the Permian and was followed(in the late Paleozoic) by collision between the Tarim Block and the Central Tianshan Arc Terrane.
基金theNationalNaturalScienceFoundationofChina (No .49772 12 2 ) ,theBureauofGeologyandMineralResourcesofYunnanProvince ,andtheFederalInstituteofGeosciencesandNaturalRe sources (BGR)ofGermany
文摘Over the last years, the Simao region, southwestern Yunnan, China, turned out to be a very promising target to elucidate plate tectonic processes around the Permian Triassic boundary within the Tethyan domain of Asia. New data from this area reveal that Upper Paleozoic compressional deformations occurred along the Lancangjiang and in areas to the east. Along Lancangjiang, an angular unconformity is exposed, which separates quartz phyllites—formed during a Carboniferous tectono metamorphic event—from Triassic red beds to roofing rhyolites. The acidic volcanics were often said to be remnants of a volcanic arc that was active during the Triassic subduction and closure of an oceanic realm along the Lancangjiang zone. According to our new data, however, these volcanics indicate most probably an Upper Triassic stage of rifting. In the Yunxian anticline (NW of Simao), an angular unconformity of intra Permian age is exposed where Carboniferous to lower Middle Permian strata, which were deposited in a rather deep basin, are unconformably overlain by a shallow marine sequence of upper Middle to Upper Permian sediments. The angular unconformity is of the same age as the syn orogenous sediments first described and dated from the Phetchabun region in Thailand and hence a convincing argument for a Late Variscan orogeny forming an extensive zone of mountain building that can be traced through the central parts of mainland Southeast Asia.
基金supported by projects from the China Geological Survey(Grant Nos.12120113089600,12120114028701 and 1212011085472)
文摘The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases) and NW-trending (mainly diabasic diorites) dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with eHf(t) values of -8.90 to 7.49 and -23.39 to -7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma), respectively. Geochemically these rocks are characterized by low TiO2 (0.91-1.73 wt.%) and MgO (3.04-7.96 wt.%), and high A1203 (12.5-16.60 wt.%) and K20 (0.60-3.63 wt.%). Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K), but depleted in HFSEs (Nb, Ta and Zr). The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional envi- ronment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.
文摘The analyses of different sulfur forms, the trace elements in pyrites using electron microprobe and the trace elements in coal using INAA (instrumental neutron activation analysis) of the Late Paleozoic coals from the Taozao coalfield in Shandong Province, China, conclude that most sulfur (>75 %) in high-sulfur coal of Taiyuan Formation occurred as pyrite, in which many hazardous elements co-existed and their concentrations varied with their geological origin. The concentrations of hazardous elements in high-sulfur coals from Taiyuan Formation, composing mainly of Cu, As, U, Pb, Mo and Co, are much higher than those in the low-sulfur coals from Shanxi Formation and Shihezi Formation, because the influence of seawater during and after coal accumulation in Taiyuan Formation is stronger than those in Shanxi and Shihezi formations. Moreover, the element As is related to Fe, and both elements exist mainly in the form of pyrite. The element U is richer in the coal influenced by seawater. In addition, the coal affected by the magmatism contains more U, too. When high-sulfur coals are processed with heavy media washing to remove sulfur and minerals, the majority of hazardous elements will also be removed from the coals.
基金financially supported by the National Key R&D Program of China(2017YFC0601205)National Natural Science Foundation of China(41730213 and 41190075)+1 种基金the Hong Kong Research Grants Council General Research Fund(grants 17307918 and 17301915)the Youth Program of Shaanxi Natural Science Foundation(2020JQ589)。
文摘The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.
基金This work was supported by the National Natural Science Foundation of China(41702124,41772272)the China Geological Survey Program(DD20190094).
文摘The widely-developed,mixed clastic-carbonate succession in the northern Qaidam Basin records the paleo-environment changes under the glacial activity during the Late Paleozoic icehouse period in the context of regional tectonic stability,however,the depositional environment and sequence stratigraphy characteristics of the mixed deposits is rarely reported and still not clear.Combined the latest drilling wells data,we analyzed the sedimentary and stratigraphic characterization of the mixed strata via detailed field outcrops and core observations and thin section microscopic observations and recognized three depositional systems,including progradational coastal system,incised valley system,and carbonate-dominated marine shelf system,and identified four third-order sequences,SQ1,SQ2,SQ3 and SQ4,consisting of LST,TST,and HST.The depositional environment is overall belonged to marine-continental transition context and shifted from marine to continental environment frequently,showing an evolutionary pattern from marine towards terrestrial-marine transition and then back into the marine environment again in the long-term,which was controlled by the regional tectonic subsidence and the high-frequency and large-amplitude sea-level changes due to the Late Paleozoic glacial activity.The result is of significance in understanding the evolution of the Qinghai-Tibet Plateau and the sedimentation-climate response.
基金financially supported by National Natural Science Fund of China (grant no.41302202)Basic Scientific Research Project of Institute of Geological Mechanics (no.DZLXJK201305)
文摘The Qaidam basin is the largest intermountain basin inside Tibet, and is one of the three major petroliferous basins in western China. This study discussed the geothermal field and tectono-thermal evolution of the basin, in an effort to provide evidence for intracontinental or intraplate continental dynamics and basin dynamics, petroleum resources assessment, and to serve petroleum production.
基金Supported by Project of China Geological Survey (No. 1212011120153 - 3)
文摘Late Paleozoic strata in northeastern China are distributed in a zonal pattern around the old-land on the Jiamusi-Mongolia Block. They are composed of active deposits in the regular distributed tectonic lithofacies zones. This indicates that the late Paleozoic strata belong to continental margin deposits. According to the strong conformability of the sedimentary strata in the same continental margin and distinct differences among the three continental margins, three stratigraphical regions of the Jiamusi-Mongolia Stratigraphical Province are recognized along the northern, southern and eastern margins of the Jiamusi-Mongolia Block, named respectively as Xing'an Stratigraphical Region, Inner Mongolia grass-Songhua River Stratigraphical Region and Baoqing-Hunchun Stra- tigraphical Region. Due to the characteristics of continental margin deposits and active sediments, the strata can be correlated on the level of formation by the methods of analysing the rock association in the same stratigraphic region. Therefore, some revisions of the lithologieal formations of the late Paleozoic strata in northeastern China have been made, and a new chart of lithostratigraphic correlation has been proposed. Furthermore, the present stratigraphic framework is setting on the International Stratigraphic Chart on the level of stage, after comprehen- sive researches to lithostratigraphy, biostratigraphy and chronostratigraphy, especially the conodont biostratigra- phy and isotopic ages of volcanic rocks obtained in recent years.
基金supported by V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch of Russian Academy of Sciences (basic project)
文摘We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.
文摘Carboniferous—Lower Permian volcanic rocks and small\|scale basic and ultrabasic intrusions occur in Chabu\|Chasang region of central Qiangtang plateau in northern Tibet Detailed studies of petrology and geochemistry of magmatic rocks further indicate that there were really a Late Paleozoic rift valley in Chabu\|Chasang area, and no so\|called Paleo\|Tethys suture zone existed there. The rift initially split in early Carboniferous, access the peak in Lower Permian, is closed and folded during Late Permian. The volcanic rocks composed of mainly basalts, a small amount of basaltic andesites and andesites, are zonally distributed, and occur alternately with flysch or flyschoid sandstones, slates, pebbled slates, radiolarian cherts and carbonate rocks. The sedimentary facies change rapidly toward both sides and show rapid deposits of proximal gravity flow.
基金Mineralogical investigations were carried out using research project of the Geology Institute of SB RAS,NoAAAA-A16-116122110027-2supported by the Russian Foundation for Basic Research (Project No.17-05-00309-a)supported by the Russian Science Foundation (Grant 19-17-00019)
文摘This paper presents the results of geochronological(40Ar-39Ar,U-Pb SHRIMP Ⅱ),petrological and geochemical studies of the Late Paleozoic complexes of alkaline rocks(Zimovechinsky,Tuchinsky and Koma) located within the Vitim Plateau(the western part of the Mongol-Okhotsk Orogenic Belt).The rocks were formed at 310-280 Ma.It is coeval with Late Paleozoic magmatism within the Central Asian Orogenic Belt.The εNd(T) values show large variations from-2.1 to +3.3 as well as the initial Sr(I) isotopic ratios from 0.7042 to 0.7138,that demonstrate strong isotopic heterogeneity of the magmatic source.The geochemical characteristics of the rocks show pronounced positive Pb and negative Ti,Zr-Hf anomalies that can be explained by involvement of the subducted component in primary melts.The rocks intruded in a setting of extension at the active continental margin of the Siberian Craton during subduction of Mongol-Okhotsk oceanic crust under the Siberian Craton.