Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximat...Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.展开更多
BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and grow...BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.展开更多
The purpose of this study was to investigate the effect of four fluorescent dyes, True Blue(TB), Fluoro-Gold(FG), Fluoro-Ruby(FR), and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Di I...The purpose of this study was to investigate the effect of four fluorescent dyes, True Blue(TB), Fluoro-Gold(FG), Fluoro-Ruby(FR), and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Di I), in retrograde tracing of rat spinal motor neurons. We transected the muscle branch of the rat femoral nerve and applied each tracer to the proximal stump in single labeling experiments, or combinations of tracers(FG-Di I and TB-Di I) in double labeling experiments. In the single labeling experiments, significantly fewer labeled motor neurons were observed after FR labeling than after TB, FG, or Di I, 3 days after tracer application. By 1 week, there were no significant differences in the number of labeled neurons between the four groups. In the double-labeling experiment, the number of double-labeled neurons in the FG-Di I group was not significantly different from that in the TB-Di I group 1 week after tracer application. Our findings indicate that TB, FG, and Di I have similar labeling efficacies in the retrograde labeling of spinal motor neurons in the rat femoral nerve when used alone. Furthermore, combinations of Di I and TB or FG are similarly effective. Therefore, of the dyes studied, TB, FG and Di I, and combinations of Di I with TB or FG, are the most suitable for retrograde labeling studies of motor neurons in the rat femoral nerve.展开更多
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity o...Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy.Sprague-Dawley rats were mated with male rats at a 1:1 ratio.Rats were administered 0,5,10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21.The gait scores were examined in pregnant rats in each group to analyze maternal toxicity.Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies.Nissl staining was used to observe histological change in the hippocampus.Immunohistochemistry was conducted to observe the condition of neurites,including dendrites and axons.Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein,growth associated protein 43,and the presynaptic vesicle membrane specific protein,synaptophysin.The gait scores of gravid rats significantly increased,suggesting that acrylamide induced maternal motor dysfunction.The number of neurons,as well as expression of growth associated protein 43 and synaptophysin,was reduced with increasing acrylamide dose in postnatal day 21 weaning rats.These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.展开更多
There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The pr...There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 m L/kg saline. Behavioral test(the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.展开更多
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right media...Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.展开更多
We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral co...We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide(NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.展开更多
Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for th...Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.展开更多
Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is ne...Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia(at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke.展开更多
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent ne...End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent nerve(donor nerve).However,the motor-sensory specificity after end-to-side neurorrhaphy remains unclear.This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy.Thirty rats were randomized into three groups:(1) end-to-side neurorrhaphy using the ulnar nerve(mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve;(2) the sham group:ulnar nerve and cutaneous antebrachii medialis nerve were just exposed;and(3) the transected nerve group:cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied.At 5 months,acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group,and none of the myelinated axons were stained in either the sham or transected nerve groups.Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%.In contrast,no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment.These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.展开更多
The purpose of this study was to study the role of neurofilament (NF) mRNA and calpain in NF reduction of acrylamide (ACR) neuropathy. Male Wistar adult rats were injected i.p. every other day with AER (20 mg/kg....The purpose of this study was to study the role of neurofilament (NF) mRNA and calpain in NF reduction of acrylamide (ACR) neuropathy. Male Wistar adult rats were injected i.p. every other day with AER (20 mg/kg.bW or 40 mg/kg.bW) for 8 weeks. NF mRNA expression was detected using RT-PCR and the calpain concentration was determined using western blot analysis. The NF mRNA expression significantly decreased while the level of m-calpain and μ-calpain significantly increased in two ACR-treated rats groups regardless of the ACR dose. The light NF (NF-L) protein expression was significantly correlated with NF-L mRNA expression. Combined with previous data, the concentrations of three NF subunits were negatively correlated with the calpain levels. These findings suggest that NF-L mRNA and calpain mediated the reduction in NF of AER neuropathy.展开更多
Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near...Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near infrared spectroscopy(f NIRS), we attempted to investigate cortical activation generated during bilateral arm raising movements. Ten normal subjects were recruited for this study. f NIRS was performed using an f NIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in five regions of interest: the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and posterior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising movements appeared to induce large-scale neuronal activation and therefore arm raising movements would be good exercise for recovery of brain functions.展开更多
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus.This indicates that the denervated hippocampus provides an environment for neuronal d...Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus.This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells.However,the pathways and mechanisms in this process are still unclear.Seven days after fimbria fornix transection,our reverse transcription polymerase chain reaction,western blot assay,and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor m RNA and protein expression in the denervated hippocampus.Moreover,neural stem cells derived from hippocampi of fetal(embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days,with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected.Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus,which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.展开更多
Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain isch...Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.展开更多
c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-in...c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.展开更多
Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hip...Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus.展开更多
GIT1,a G-protein-coupled receptor kinase interacting protein,has been reported to be involved in neurite outgrowth.However,the neurobiological functions of the protein remain unclear.In this study,we found that GIT1 w...GIT1,a G-protein-coupled receptor kinase interacting protein,has been reported to be involved in neurite outgrowth.However,the neurobiological functions of the protein remain unclear.In this study,we found that GIT1 was highly expressed in the nervous system,and its expression was maintained throughout all stages of neuritogenesis in the brain.In primary cultured mouse hippocampal neurons from GIT1 knockout mice,there was a significant reduction in total neurite length per neuron,as well as in the average length of axon-like structures,which could not be prevented by nerve growth factor treatment.Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice.The GIT1 N terminal region,including the ADP ribosylation factor-GTPase activating protein domain,the ankyrin domains and the Spa2 homology domain,were sufficient to enhance axonal extension.Importantly,GIT1 bound to many tubulin proteins and microtubule-associated proteins,and it accelerated microtubule assembly in vitro.Collectively,our findings suggest that GIT1 promotes neurite outgrowth,at least partially by stimulating microtubule assembly.This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.展开更多
Peripheral neuropathies refer to a group of conditions in which the peripheral nervous system(PNS)is damaged.These pathological state are are associated with weakness,pain,and loss of motor and sensory control.More th...Peripheral neuropathies refer to a group of conditions in which the peripheral nervous system(PNS)is damaged.These pathological state are are associated with weakness,pain,and loss of motor and sensory control.More than 100 types of peripheral neuropathies have been identified,with distinct symptoms and prognosis classified according to the type of damage to the nerves.Injury to peripheral nerves results in disabling loss of sensory and motor func-展开更多
基金supported by the Key Scientific and Technological Program of Linyi City of China,No.201313026
文摘Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.
文摘BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.
基金supported by a grants from the National Program on Key Basic Research Project(973 Program),No.2014CB542200the Innovative Research Team by the Ministry of Education,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31040043,31371210,81372044,31471144the Beijing Municipal Natural Science Foundation of China,No.7142164
文摘The purpose of this study was to investigate the effect of four fluorescent dyes, True Blue(TB), Fluoro-Gold(FG), Fluoro-Ruby(FR), and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Di I), in retrograde tracing of rat spinal motor neurons. We transected the muscle branch of the rat femoral nerve and applied each tracer to the proximal stump in single labeling experiments, or combinations of tracers(FG-Di I and TB-Di I) in double labeling experiments. In the single labeling experiments, significantly fewer labeled motor neurons were observed after FR labeling than after TB, FG, or Di I, 3 days after tracer application. By 1 week, there were no significant differences in the number of labeled neurons between the four groups. In the double-labeling experiment, the number of double-labeled neurons in the FG-Di I group was not significantly different from that in the TB-Di I group 1 week after tracer application. Our findings indicate that TB, FG, and Di I have similar labeling efficacies in the retrograde labeling of spinal motor neurons in the rat femoral nerve when used alone. Furthermore, combinations of Di I and TB or FG are similarly effective. Therefore, of the dyes studied, TB, FG and Di I, and combinations of Di I with TB or FG, are the most suitable for retrograde labeling studies of motor neurons in the rat femoral nerve.
基金supported by the Guangdong Provincial Department of Science and Technology in China,No.2016A020225007
文摘Although numerous studies have examined the neurotoxicity of acrylamide in adult animals,the effects on neuronal development in the embryonic and lactational periods are largely unknown.Thus,we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy.Sprague-Dawley rats were mated with male rats at a 1:1 ratio.Rats were administered 0,5,10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21.The gait scores were examined in pregnant rats in each group to analyze maternal toxicity.Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies.Nissl staining was used to observe histological change in the hippocampus.Immunohistochemistry was conducted to observe the condition of neurites,including dendrites and axons.Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein,growth associated protein 43,and the presynaptic vesicle membrane specific protein,synaptophysin.The gait scores of gravid rats significantly increased,suggesting that acrylamide induced maternal motor dysfunction.The number of neurons,as well as expression of growth associated protein 43 and synaptophysin,was reduced with increasing acrylamide dose in postnatal day 21 weaning rats.These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.
基金funded by the Department of Biology,Faculty of Science,Arak University,Iran,No.38156-8-8349
文摘There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 m L/kg saline. Behavioral test(the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.
基金supported by the National Natural Science Foundation of China,No.81471288
文摘Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
基金supported by the Youth Program of the National Natural Science Foundation of China,No.11102235the Key Science and Technology Support Project of Tianjin City of China,No.14ZCZDGX00500+3 种基金the Key Program of the Natural Science Foundation of Tianjin City of China,No.12JCZDJC24100the Science and Technology Foundation of Health Bureau of Tianjin City of China,No.2013KZ134,2014KZ135the Youth Program of the Natural Science Foundation of Tianjin City of China,No.12JCQNJC07100the Seed Foundation of Affiliated Hospital of Logistics University of Chinese People’s Armed Police Force,No.FYM201432
文摘We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide(NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.
基金supported by the Youth Researcher Foundation of Shanghai Health Development Planning Commission,No.20124319
文摘Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.
基金supported by a grant from the Guangdong Science&Technology Plan Program in China,No.2014A020212043the a grant from the Shenzhen Science&Technology Plan Program in China,No.JCYJ20140414170821242+1 种基金the a grant from Shenzhen Collaborative Innovation Plan Program in China,No.GJHZ20120614154914623a grant from the Science&Technology Project of Shanxi Health and Family Planning Commission in China,No.201201060
文摘Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia(at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke.
文摘End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve.It involves suturing the distal stump of the disconnected nerve(recipient nerve) to the side of the intimate adjacent nerve(donor nerve).However,the motor-sensory specificity after end-to-side neurorrhaphy remains unclear.This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy.Thirty rats were randomized into three groups:(1) end-to-side neurorrhaphy using the ulnar nerve(mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve;(2) the sham group:ulnar nerve and cutaneous antebrachii medialis nerve were just exposed;and(3) the transected nerve group:cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied.At 5 months,acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group,and none of the myelinated axons were stained in either the sham or transected nerve groups.Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%.In contrast,no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment.These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.
基金the National Natural Science Funding of China(No.30872088,81372969)
文摘The purpose of this study was to study the role of neurofilament (NF) mRNA and calpain in NF reduction of acrylamide (ACR) neuropathy. Male Wistar adult rats were injected i.p. every other day with AER (20 mg/kg.bW or 40 mg/kg.bW) for 8 weeks. NF mRNA expression was detected using RT-PCR and the calpain concentration was determined using western blot analysis. The NF mRNA expression significantly decreased while the level of m-calpain and μ-calpain significantly increased in two ACR-treated rats groups regardless of the ACR dose. The light NF (NF-L) protein expression was significantly correlated with NF-L mRNA expression. Combined with previous data, the concentrations of three NF subunits were negatively correlated with the calpain levels. These findings suggest that NF-L mRNA and calpain mediated the reduction in NF of AER neuropathy.
基金supported by the DGIST R&D Program of the Ministry of Science,ICT and Future Planning,No.16-BD-0401
文摘Bilateral arm raising movements have been used in brain rehabilitation for a long time. However, no study has been reported on the effect of these movements on the cerebral cortex. In this study, using functional near infrared spectroscopy(f NIRS), we attempted to investigate cortical activation generated during bilateral arm raising movements. Ten normal subjects were recruited for this study. f NIRS was performed using an f NIRS system with 49 channels. Bilateral arm raising movements were performed in sitting position at the rate of 0.5 Hz. We measured values of oxyhemoglobin and total hemoglobin in five regions of interest: the primary sensorimotor cortex, premotor cortex, supplementary motor area, prefrontal cortex, and posterior parietal cortex. During performance of bilateral arm raising movements, oxyhemoglobin and total hemoglobin values in the primary sensorimotor cortex, premotor cortex, supplementary motor area, and prefrontal cortex were similar, but higher in these regions than those in the prefrontal cortex. We observed activation of the arm somatotopic areas of the primary sensorimotor cortex and premotor cortex in both hemispheres during bilateral arm raising movements. According to this result, bilateral arm raising movements appeared to induce large-scale neuronal activation and therefore arm raising movements would be good exercise for recovery of brain functions.
基金supported by grants of Jiangsu Natural College Foundation of China,No.13KJB310010,14KJB310015the Natural Foundation of Nantong University of China,No.14ZY022
文摘Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus.This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells.However,the pathways and mechanisms in this process are still unclear.Seven days after fimbria fornix transection,our reverse transcription polymerase chain reaction,western blot assay,and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor m RNA and protein expression in the denervated hippocampus.Moreover,neural stem cells derived from hippocampi of fetal(embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days,with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected.Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus,which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
文摘Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.
基金supported by the Henan Province Education Department Key Project of Science and Technology Research in China,No.12A350006
文摘c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.
文摘Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus.
基金supported by the grants to HLS from the National Natural Science Foundation of China(81371507)Medicine and Engineering Cross-talking Funds of Shanghai Jiao Tong University(YG2013MS40)+8 种基金Science and Technology Projects of Shanghai Jiao Tong University Medical School(13XJ10016)the National Basic Research Program of China(973 Program2013CB945600)by the grants to WQG from the Chinese Ministry of Science and Technology(2012CB966800 and 2013CB945600)the National Natural Science Foundation of China(81130038 and 81372189)the Science and Technology Commission of Shanghai Municipality(Pujiang Program)the Shanghai Health Bureau Key Disciplines and Specialties Foundationthe Shanghai Education Committee Key Discipline and Specialties Foundation(J50208)KC Wong Foundation
文摘GIT1,a G-protein-coupled receptor kinase interacting protein,has been reported to be involved in neurite outgrowth.However,the neurobiological functions of the protein remain unclear.In this study,we found that GIT1 was highly expressed in the nervous system,and its expression was maintained throughout all stages of neuritogenesis in the brain.In primary cultured mouse hippocampal neurons from GIT1 knockout mice,there was a significant reduction in total neurite length per neuron,as well as in the average length of axon-like structures,which could not be prevented by nerve growth factor treatment.Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice.The GIT1 N terminal region,including the ADP ribosylation factor-GTPase activating protein domain,the ankyrin domains and the Spa2 homology domain,were sufficient to enhance axonal extension.Importantly,GIT1 bound to many tubulin proteins and microtubule-associated proteins,and it accelerated microtubule assembly in vitro.Collectively,our findings suggest that GIT1 promotes neurite outgrowth,at least partially by stimulating microtubule assembly.This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.
基金funded by FONDAP program 15150012(to CH and FAC)Millennium Institute,No.P09-015-F+12 种基金the Frick Foundation 20014-15ALS Therapy Alliance 2014-F-059Muscular Dystrophy Association 382453CONICYT-USA 2013-0003Michael J Fox Foundation for Parkinson′s Research–Target Validation grant No.9277COPEC-UC Foundation 2013.R.40Ecos-Conicyt C13S02FONDECYT No.1140549Office of Naval Research-Global(ONR-G)N62909-16-1-2003ALSRP Therapeutic Idea Award AL150111(to CH)Millennium Nucleus-P-07-011-FFONDECYT,No.1110987(to FAC)PhD fellow supported by CONICYT,No.21130843(to MO)
文摘Peripheral neuropathies refer to a group of conditions in which the peripheral nervous system(PNS)is damaged.These pathological state are are associated with weakness,pain,and loss of motor and sensory control.More than 100 types of peripheral neuropathies have been identified,with distinct symptoms and prognosis classified according to the type of damage to the nerves.Injury to peripheral nerves results in disabling loss of sensory and motor func-