期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Comparison of short- with long-term regeneration results after digital nerve reconstruction with musclein-vein conduits
1
作者 Jennifer Lynn Schiefer Lukas Schulz +3 位作者 Rebekka Rath Stéphane Stahl Hans-Eberhard Schaller Theodora Manoli 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1674-1677,共4页
Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with mus... Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Static and moving two-point discriminations and Semmes-Weinstein Monofilaments were used to evaluate sensory recovery 6–12 months and 14–35 months after repair of digital nerves with muscle-in-vein in 7 cases. Both follow-ups were performed after clinical signs of progressing regeneration disappeared. In 4 of 7 cases, a further recovery of both two-point discriminations and in another case of only the static two-point discrimination of 1–3 mm could be found between the short-term and long-term follow-up examination. Moreover, a late recovery of both two-point discriminations was demonstrated in another case. Four of 7 cases showed a sensory improvement by one Semmes-Weinstein Monofilaments. This pilot study suggests that sensory recovery still takes place even when clinical signs of progressing regeneration disappear. 展开更多
关键词 peripheral nerve regeneration muscle-in-vein conduits digital nerves sensory recovery Semmes-Weinstein two-point discrimination outcome short-term long-term
下载PDF
A study on peripheral nerve regeneration via biomimetic conduits loadedwith Schwann cells and nerve growth factor
2
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期53-55,共3页
关键词 NGF A study on peripheral nerve regeneration via biomimetic conduits loadedwith Schwann cells and nerve growth factor SC
下载PDF
Combined use of Y-tube conduits with human umbilical cord stem cells for repairing nerve bifurcation defects 被引量:2
3
作者 Aikeremujiang.Muheremu Jun-gang Sun +3 位作者 Xi-yuan Wang Fei Zhang Qiang Ao Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期664-669,共6页
Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduit... Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes. 展开更多
关键词 nerve regeneration peripheral nerve injury nerve conduit selective nerve regeneration chemotaxis human umbilical cord blood stem cell stem cell transplantation neural regeneration
下载PDF
Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning 被引量:7
4
作者 Hong-kui Wang Ya-xian Wang +5 位作者 Cheng-bin Xue Zhen-mei-yu Li Jing Huang Ya-hong Zhao Yu-min Yang Xiao-song Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期168-173,共6页
Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineere... Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. 展开更多
关键词 nerve regeneration angiogenesis micro-CT MICROFIL perfusion three-dimensional reconstruction tissue-engineered nerve skin-derived precursor chitosan nerve conduit Schwann cell neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部