期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Puerarin ameliorates allodynia and hyperalgesia in rats with peripheral nerve injury 被引量:14
1
作者 Heng-Tao Xie Zhong-Yuan Xia +2 位作者 Xia Pan Bo Zhao Zhi-Gang Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1263-1268,共6页
Puerarin is a major active ingredient of the traditional Chinese plant medicine,Radix Puerariae,and commonly used in the treatment of myocardial and cerebral ischemia.However,the effects of puerarin on neuropathic pai... Puerarin is a major active ingredient of the traditional Chinese plant medicine,Radix Puerariae,and commonly used in the treatment of myocardial and cerebral ischemia.However,the effects of puerarin on neuropathic pain are still unclear.In this study,a neuropathic pain animal model was created by partial sciatic nerve ligation.Puerarin(30 or 60 mg/kg) was intraperitoneally injected once a day for 7 days.Mechanical allodynia and thermal hyperalgesia were examined at 1 day after model establishment.Mechanical threshold and paw withdrawal latency markedly increased in a dose-dependent manner in puerarin-treated rats,especially at 7 days after model establishment.At 7 days after model establishment,quantitative real-time reverse transcriptase-polymerase chain reaction results showed that puerarin administration reversed m RNA expression of transient receptor potential vanilloid 1(Trpv1) and transient receptor potential ankyrin 1(Trpa1) in a dose-dependent manner in dorsal root ganglion neurons after peripheral nerve injury.These results suggest that puerarin dose-dependently ameliorates neuropathic pain by suppressing Trpv1 and Trpa1 up-regulation in dorsal root ganglion of neuropathic pain rats. 展开更多
关键词 nerve regeneration puerarin radix puerariae traditional chinese medicine Trpv1 Trpa1 dorsal root ganglion peripheral nerve injury neuropathic pain mechanical allodynia thermal hyperalgesia neural regeneration
下载PDF
Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mT OR-ULK1 signaling pathway 被引量:51
2
作者 Jin-Feng Wang Zhi-Gang Mei +7 位作者 Yang Fu Song-Bai Yang Shi-Zhong Zhang Wei-Feng Huang Li Xiong Hua-Jun Zhou Wei Tao Zhi-Tao Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期989-998,共10页
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the c... Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration puerarin AUTOPHAGY cerebral ischemia/reperfusion AMPK-m TOR-ULK1 signaling pathway light chain 3 p62 ischemic stroke AMPK/m TOR traditional chinese medicine middle cerebral artery occlusion neural regeneration
下载PDF
Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation 被引量:12
3
作者 Na Wang Yong-ming Jia +5 位作者 Bo Zhang Di Xue Maharjan Reeju Yan Li Shu-ming Huang Xue-wei Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期654-659,共6页
Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-... Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ) induced cognitive dysfunction and is neuroprotective in vivo, but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE), which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL) into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d) intragastrically for 21 consecutive days. Hematoxylin eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats. 展开更多
关键词 nerve regeneration NEURODEGENERATION traditional chinese medicine Kai Xin San insulin-degrading enzyme amyloid-β Alzheimer'sdisease chinese herbal compound Aβ-degrading enzymes neurons radix Ginseng radix Polygalae Acorus Tatarinowii Rhizoma neuralregeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部