Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of ba...Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.展开更多
Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herb...Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 m L of 0.8 g/m L Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury.展开更多
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling...Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.展开更多
基金supported by the Chinese Medicine Research Foundation of Jiangxi Provincial Health Department of China,No.2013A040the Science and Technology Program of Jiangxi Provincial Health Department of China,No.20123023the Science and Technology Support Program of Jiangxi Province of China,No.2009BSB11209
文摘Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.
基金supported by a grant from the University Students’Innovation and Entrepreneurship Training Program in Liaoning Province of China,No.201310160016
文摘Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 m L of 0.8 g/m L Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.81360562
文摘Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.