期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Identifying Malaria Hotspots Regions in Ghana Using Bayesian Spatial and Spatiotemporal Models
1
作者 Abdul-Karim Iddrisu Dominic Otoo +4 位作者 Gordon Hinneh Yakubu Dekongmene Kanyiri Kanimam Yaaba Samuel Cecilia Kubio Francis Balungnaa Dhari Veriegh 《Infectious Diseases & Immunity》 CSCD 2024年第2期69-78,共10页
Background:Malaria remains a significant public health concern in Ghana,with varying risk levels across different geographical areas.Malaria affects millions of people each year and imposes a substantial burden on the... Background:Malaria remains a significant public health concern in Ghana,with varying risk levels across different geographical areas.Malaria affects millions of people each year and imposes a substantial burden on the health care system and population.Accurate risk estimation and mapping are crucial for effectively allocating resources and implementing targeted interventions to identify regions with disease hotspots.This study aimed to identify regions exhibiting elevated malaria risk so that public health interventions can be implemented,and to identify malaria risk predictors that can be controlled as part of public health interventions for malaria control.Methods:The data on laboratory-confirmed malaria cases from 2015 to 2021 were obtained from the Ghana Health Service and Ghana Statistical Service.We studied the spatial and spatiotemporal patterns of the relative risk of malaria using Bayesian spatial and spatiotemporal models.The malaria risk for each region was mapped to visually identify regions with malaria hotspots.Clustering and heterogeneity of disease risks were established using correlated and uncorrelated structures via the conditional autoregressive and Gaussian models,respectively.Parameter estimates from the marginal posterior distribution were estimated within the Integrated Nested Laplace Approximation using the R software.Results:The spatial model indicated an increased risk of malaria in the North East,Bono East,Ahafo,Central,Upper West,Brong Ahafo,Ashanti,and Eastern regions.The spatiotemporal model results highlighted an elevated malaria risk in the North East,Upper West,Upper East,Savannah,Bono East,Central,Bono,and Ahafo regions.Both spatial and spatiotemporal models identified the North East,Upper West,Bono East,Central,and Ahafo Regions as hotspots for malaria risk.Substantial variations in risk were evident across regions(H=104.9,P<0.001).Although climatic and economic factors influenced malaria infection,statistical significance was not established.Conclusions:Malaria risk was clustered and varied among regions in Ghana.There are many regions in Ghana that are hotspots for malaria risk,and climate and economic factors have no significant influence on malaria risk.This study could provide information on malaria transmission patterns in Ghana,and contribute to enhance the effectiveness of malaria control strategies. 展开更多
关键词 MALARIA Disease hotspot Bayesian modeling Conditional auto-regressive Integrated nested Laplace Approximation Spatial and spatiotemporal models
原文传递
Maximum likelihood estimation of nonlinear mixed-effects models with crossed random effects by combining first-order conditional linearization and sequential quadratic programming
2
作者 Liyong Fu Mingliang Wang +2 位作者 Zuoheng Wang Xinyu Song Shouzheng Tang 《International Journal of Biomathematics》 SCIE 2019年第5期1-18,共18页
Nonlinear mixed-eirects (NLME) modek have become popular in various disciplines over the past several decades.However,the existing methods for parameter estimation imple-mented in standard statistical packages such as... Nonlinear mixed-eirects (NLME) modek have become popular in various disciplines over the past several decades.However,the existing methods for parameter estimation imple-mented in standard statistical packages such as SAS and R/S-Plus are generally limited k) single-or multi-level NLME models that only allow nested random effects and are unable to cope with crossed random effects within the framework of NLME modeling.In t his study,wc propose a general formulation of NLME models that can accommodate both nested and crassed random effects,and then develop a computational algorit hm for parameter estimation based on normal assumptions.The maximum likelihood estimation is carried out using the first-order conditional expansion (FOCE) for NLME model linearization and sequential quadratic programming (SCJP) for computational optimization while ensuring positive-definiteness of the estimated variance-covariance matrices of both random effects and error terms.The FOCE-SQP algorithm is evaluated using the height and diameter data measured on trees from Korean larch (L.olgeiisis var,Chang-paienA.b) experimental plots aa well as simulation studies.We show that the FOCE-SQP method converges fast with high accuracy.Applications of the general formulation of NLME models are illustrated with an analysis of the Korean larch data. 展开更多
关键词 CROSSED RANDOM EFFECTS FIRST-ORDER CONDITIONAL expansion nested RANDOM EFFECTS NONLINEAR mixed-effects models sequential quadratic programming
原文传递
基于PM_(2.5)站点监测数据的京津冀AOD补值研究 被引量:3
3
作者 宋春杰 魏强 +5 位作者 范丽行 王卫 韩芳 李伟妙 李夫星 成贺玺 《中国环境科学》 EI CAS CSCD 北大核心 2022年第7期3000-3012,共13页
以京津冀2020年318个地面监测站点的PM_(2.5)数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM_(2.5)匹配数据的日期,上述两个模型估算... 以京津冀2020年318个地面监测站点的PM_(2.5)数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM_(2.5)匹配数据的日期,上述两个模型估算精度相近,交叉验证后决定系数R^(2)分别为0.868和0.874,均方根误差RMSE分别为0.112和0.109;在无AOD-PM_(2.5)匹配数据的日期,嵌套模型估算精度明显高于非嵌套模型,交叉验证后决定系数R^(2)分别为0.63和0.26.经过模型补值后,研究区监测站点所在网格AOD数据空间维有效比率从原始数据的44.35%提高到99.35%,时间维有效比率从87.94%提高到100%;同时,每个站点的年均AOD值都有明显提高,弥补了高PM_(2.5)浓度条件下缺失的AOD数据,可以减少空气污染和健康研究中暴露评估的偏差. 展开更多
关键词 MAIAC AOD 监测站点AOD补值 时空混合效应模型 时空嵌套混合效应模型 京津冀
下载PDF
结合地基PM_(2.5)观测资料构建京津冀MODIS AOD完整数据集
4
作者 魏强 宋春杰 +5 位作者 李梦诗 段继福 李夫星 韩芳 李伟妙 王卫 《环境科学学报》 CAS CSCD 北大核心 2024年第5期368-383,共16页
针对遥感气溶胶光学厚度(AOD)产品普遍存在的非随机性缺失问题,本文选取2020年京津冀地区10km×10km的MODIS_MYDMOD04_L2日值数据和地基PM_(2.5)浓度观测日值数据,经过MODIS AOD单星两种算法产品的逆方差加权及双星算术平均融合、PM... 针对遥感气溶胶光学厚度(AOD)产品普遍存在的非随机性缺失问题,本文选取2020年京津冀地区10km×10km的MODIS_MYDMOD04_L2日值数据和地基PM_(2.5)浓度观测日值数据,经过MODIS AOD单星两种算法产品的逆方差加权及双星算术平均融合、PM_(2.5)浓度数据的嵌套式时空混合效应模型转换融合和基于上述两种融合产品的时空克里金插值融合等方法集成,建立了研究区完整的AOD日值数据集.结果显示:经AERONET AOD数据验证,双星MODIS AOD融合结果R^(2)为0.87,RMSE为0.27;混合效应模型转换融合结果R^(2)为0.82,RMSE为0.31;时空克里金插值融合结果R^(2)为0.83,RMSE为0.28.AOD数据年平均每日空间覆盖率从MODIS原始数据的58.36%提高到时空克里金插值融合后的98.00%.MODIS AOD多算法多星数据融合的作用是增强与PM_(2.5)浓度日均值数据在时间尺度上的匹配度.地基PM_(2.5)浓度转换融合的作用一是补充区域内分布较均匀的局域AOD相对高值数据,保障了后续时空克里金插值的整体精度;二是能改善大片区域原始AOD数据缺失问题,可明显提高插值的时空覆盖率.所设计的数据融合方法体系,具有方法较简便、精度较高、数据集完整性好的特点. 展开更多
关键词 MODIS AOD 地基PM_(2.5)观测数据 逆方差加权 嵌套式时空混合效应模型 时空克里金插值 京津冀
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部