Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结...Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结束后通过电泳操作确认扩增产物。目前,Real Time PCR可设计多对引物在同一反应体系中同时对多个靶基因进行扩增,实现多重实时定量检测。Real Time PCR使PCR技术发生了质的飞跃,扩展了PCR技术的应用范畴,是一种具有划时代意义的技术。本文主要介绍Real Time PCR的主要原理、解析方法、技术发展趋势及其在海洋病原生物检测方面的应用。展开更多
[目的]为转基因番茄植株的高通量筛选奠定基础。[方法]利用CTAB法提取番茄叶片总RNA进行Real Time PCR扩增,分析转MI1、2基因的番茄植株表达水平的检测体系。[结果]提取RNA的A260/A280为1.78~1.88,RNA无明显降解。在严谨扩增条件...[目的]为转基因番茄植株的高通量筛选奠定基础。[方法]利用CTAB法提取番茄叶片总RNA进行Real Time PCR扩增,分析转MI1、2基因的番茄植株表达水平的检测体系。[结果]提取RNA的A260/A280为1.78~1.88,RNA无明显降解。在严谨扩增条件下,引物SYBR2的扩增效率高于SYBR1。Mg^2+的适宜浓度为2.0mg/L。Real Time PCR扩增产物具有良好的特异性,熔解曲线特异峰出现在84.5℃附近,在熔解曲线略低于83℃附近有极微弱的非特异峰。因此在定量反应中信号检测步骤应放在84℃。以4种不同模板分子数条件下扩增曲线Ct值得到的回归方程为Y=-3.78×log(copynumber)+39.50,相关系数为0.998。[结论]该试验获得的Real Time PCR体系可用于转基因植株表达水平的检测。展开更多
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
文摘Real Time PCR,即实时监测PCR扩增产物并进行解析的方法,目前已广泛应用于分子生物学研究的各个领域。Real Time PCR技术秉承及发展了普通PCR的快速、高灵敏度检出等优点,同时克服了普通PCR不能准确定量、容易污染等缺点,无需在反应结束后通过电泳操作确认扩增产物。目前,Real Time PCR可设计多对引物在同一反应体系中同时对多个靶基因进行扩增,实现多重实时定量检测。Real Time PCR使PCR技术发生了质的飞跃,扩展了PCR技术的应用范畴,是一种具有划时代意义的技术。本文主要介绍Real Time PCR的主要原理、解析方法、技术发展趋势及其在海洋病原生物检测方面的应用。
文摘[目的]为转基因番茄植株的高通量筛选奠定基础。[方法]利用CTAB法提取番茄叶片总RNA进行Real Time PCR扩增,分析转MI1、2基因的番茄植株表达水平的检测体系。[结果]提取RNA的A260/A280为1.78~1.88,RNA无明显降解。在严谨扩增条件下,引物SYBR2的扩增效率高于SYBR1。Mg^2+的适宜浓度为2.0mg/L。Real Time PCR扩增产物具有良好的特异性,熔解曲线特异峰出现在84.5℃附近,在熔解曲线略低于83℃附近有极微弱的非特异峰。因此在定量反应中信号检测步骤应放在84℃。以4种不同模板分子数条件下扩增曲线Ct值得到的回归方程为Y=-3.78×log(copynumber)+39.50,相关系数为0.998。[结论]该试验获得的Real Time PCR体系可用于转基因植株表达水平的检测。