Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect...Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.展开更多
提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成...提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。展开更多
基金National Natural Science Foundation of China(No.51478098)Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.
文摘提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。