期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus 被引量:2
1
作者 Hala J.Alshahrani Abdulkhaleq Q.A.Hassan +5 位作者 Khaled Tarmissi Amal S.Mehanna Abdelwahed Motwakel Ishfaq Yaseen Amgad Atta Abdelmageed Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第5期4255-4272,共18页
Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking an... Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively. 展开更多
关键词 Arabic corpus fake news detection deep learning hunter prey optimizer classification model
下载PDF
Analyzing the Dissemination of News by Model Averaging and Subsampling
2
作者 ZOU Jiahui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第5期2104-2131,共28页
The dissemination of news is a vital topic in management science,social science and data science.With the development of technology,the sample sizes and dimensions of digital news data increase remarkably.To alleviate... The dissemination of news is a vital topic in management science,social science and data science.With the development of technology,the sample sizes and dimensions of digital news data increase remarkably.To alleviate the computational burden in big data,this paper proposes a method to deal with massive and moderate-dimensional data for linear regression models via combing model averaging and subsampling methodologies.The author first samples a subsample from the full data according to some special probabilities and split covariates into several groups to construct candidate models.Then,the author solves each candidate model and calculates the model-averaging weights to combine these estimators based on this subsample.Additionally,the asymptotic optimality in subsampling form is proved and the way to calculate optimal subsampling probabilities is provided.The author also illustrates the proposed method via simulations,which shows it takes less running time than that of the full data and generates more accurate estimations than uniform subsampling.Finally,the author applies the proposed method to analyze and predict the sharing number of news,and finds the topic,vocabulary and dissemination time are the determinants. 展开更多
关键词 Asymptotic optimality dissemination of news linear regression models model averaging optimal subsampling.
原文传递
网络新闻评论系统的模型建构与优化策略 被引量:2
3
作者 吴志斌 姜照君 《新闻界》 CSSCI 北大核心 2010年第2期75-77,共3页
本文通过分析网易、腾讯和新浪的网络新闻评论系统,探寻当前我国网络新闻评论系统普遍存在的突出问题,并提出进一步优化网络新闻评论系统的结构和功能设置的策略和方案。
关键词 网络新闻评论系统 模型 优化
下载PDF
多头注意力评论量化的聚类优化推荐算法 被引量:1
4
作者 邱宁佳 王宪勇 王鹏 《计算机应用研究》 CSCD 北大核心 2021年第5期1376-1380,共5页
为了解决推荐算法中无法挖掘用户深层兴趣偏好,从而导致提取准确度低下,以及相似用户聚类准确率低下时间复杂度高等问题,提出评论量化模型优化差分进化的聚类优化推荐算法(MT-QRPD)。首先利用BiGRU网络的特征时序性与CNN的强局部特征有... 为了解决推荐算法中无法挖掘用户深层兴趣偏好,从而导致提取准确度低下,以及相似用户聚类准确率低下时间复杂度高等问题,提出评论量化模型优化差分进化的聚类优化推荐算法(MT-QRPD)。首先利用BiGRU网络的特征时序性与CNN的强局部特征有效性联合提取评论深度特征,并利用多头注意力机制的多维语义特征筛选对评论进行深度语义特征挖掘;然后经过多层感知机非线性转换进行多特征融合完成准确量化;最后使用PCA对差分进化变异选择进行优化完成相似用户聚类优化操作,寻找相似用户完成项目推荐。通过多项实验分析表明,所提推荐算法在量化评分准确度、时间复杂度以及推荐性能上都有较好的提升。 展开更多
关键词 推荐算法 评论量化模型 多头注意力机制 差分进化算法 聚类优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部