期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Global patterns in above-ground net primary production and precipitation-use efficiency in grasslands 被引量:4
1
作者 QIN Xiao-jing HONG Jiang-tao +1 位作者 MA Xing-xing WANG Xiao-dan 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1682-1692,共11页
The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are sti... The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are still controversial. We selected 717 grassland sites with ANPP and mean annual precipitation(MAP) data from 40 publications to characterize the relationships ANPP–MAP and PUE–MAP across different grassland types. The MAP and ANPP showed large variations across all grassland types, ranging from 69 to 2335 mm and 4.3 to 1706 g m^(-2), respectively. The global maximum PUE ranged from 0.19 to 1.49 g m^(-2) mm^(-1) with a unimodal pattern. Analysis using the sigmoid function explained the ANPP–MAP relationship best at the global scale. The gradient of the ANPP–MAP graph was small for arid and semi-arid sites(MAP <400 mm). This study improves our understanding of the relationship between ANPP and MAP across dry grassland ecosystems. It provides new perspectives on the prediction and modeling of variations in the ANPP for different grassland types along precipitation gradients. 展开更多
关键词 Litter decomposition Alpine communities Tea bag index Carbon cycle Above-ground net primary production Precipitation-use efficiency Sigmoid function Precipitation gradients
下载PDF
Assessing Net Primary Production in Montane Wetlands from Proximal, Airborne, and Satellite Remote Sensing
2
作者 Michael Maguigan John Rodgers +1 位作者 Padmanava Dash Qingmin Meng 《Advances in Remote Sensing》 2016年第2期118-130,共13页
In this study, several vegetation indices were examined in order to determine the most sensitive vegetation index for monitoring southern Appalachian wetlands. Three levels of platforms (in situ, airborne, and satelli... In this study, several vegetation indices were examined in order to determine the most sensitive vegetation index for monitoring southern Appalachian wetlands. Three levels of platforms (in situ, airborne, and satellite) for sensors were also examined in conjunction with vegetation indices. Net primary production (NPP) data were gathered to use as a measure of wetland function. Along with the in situ radiometers, National Agricultural Imagery Program (NAIP) data and Landsat 8 Operational Land Imager (OLI) data were gathered in order to calculate vegetation indices at three platforms. At the in situ level, VARI700 was the most sensitive vegetation index in terms of NPP (r<sup>2</sup> = 0.65, p < 0.05). At the airborne level, the NDVI was the most sensitive vegetation index to NPP (r<sup>2</sup> = 0.35, p = 0.11). At the satellite level, the DVI appeared to have a positive relationship with NPP. For most indices there was a drop in the coefficient of determination with NPP when the platform altitude increased, with the exception of NDVI when increasing altitude from in situ to airborne. This study provides a novel methodology comparing reflectance and vegetation indices at three platform levels. 展开更多
关键词 net primary production Montane Wetland In Situ AIRBORNE Satellite
下载PDF
Net primary production in three bioenergy crop systems following land conversion
3
作者 Michael W.Deal Jianye Xu +7 位作者 Ranjeet John Terenzio Zenone Jiquan Chen Housen Chu Poonam Jasrotia Kevin Kahmark Jonathan Bossenbroek Christine Mayer 《Journal of Plant Ecology》 SCIE 2014年第5期451-460,共10页
Aims Identifying the amount of production and the partitioning to above-and belowground biomass is generally the first step toward select-ing bioenergy systems.There are very few existing studies on the dynamics of pr... Aims Identifying the amount of production and the partitioning to above-and belowground biomass is generally the first step toward select-ing bioenergy systems.There are very few existing studies on the dynamics of production following land conversion.The objectives of this study were to(i)determine the differences in aboveground net primary production(ANPP),belowground net primary produc-tion(BNPP),shoot-to-root ratio(S:R)and leaf area index in three bioenergy crop systems and(ii)evaluate the production of these three systems in two different land use conversions.Methods This investigation included biometric analysis of NPP on three agri-cultural sites converted from conservation reserve program(CRP)management to bioenergy crop production(corn,switchgrass and prairie mix)and three sites converted from traditional agriculture production to bioenergy crop production.Important findings The site converted from conventional agriculture produced smaller ANPP in corn(19.03±1.90 standard error[SE]Mg ha^(−1) year^(−1))than the site converted from CRP to corn(24.54±1.43 SE Mg ha^(−1) year^(−1)).The two land conversions were similar in terms of ANPP for switchgrass(4.88±0.43 SE for CRP and 2.04±0.23 SE Mg ha^(−1) year^(−1) for agriculture)and ANPP for prairie mix(4.70±0.50 SE for CRP and 3.38±0.33 SE Mg ha^(−1) year^(−1) for agriculture).The BNPP at the end of the growing season in all the bioenergy crop systems was not significantly different(P=0.75,N=8). 展开更多
关键词 bioenergy crops land use change net primary production aboveground net primary production belowground net primary production
原文传递
Recent patterns of terrestrial net primary production in Africa influenced by multiple environmental changes
4
作者 Shufen Pan Shree R.S.Dangal +2 位作者 Bo Tao Jia Yang Hanqin Tian 《Ecosystem Health and Sustainability》 SCIE 2015年第5期34-48,共15页
Terrestrial net primary production(NPP)is of fundamental importance to food security and ecosystem sustainability.However,little is known about how terrestrial NPP in African ecosystems has responded to recent changes... Terrestrial net primary production(NPP)is of fundamental importance to food security and ecosystem sustainability.However,little is known about how terrestrial NPP in African ecosystems has responded to recent changes in climate and other environmental factors.Here,we used an integrated ecosystem model(the dynamic land ecosystem model;DLEM)to simulate the dynamic variations in terrestrial NPP of African ecosystems driven by climate and other environmental factors during 1980-2009.We estimate a terrestrial NPP of 10.22(minimum-maximum range of 8.9-11.3)Pg C/yr during the study period.Our results show that precipitation variability had a significant effect on terrestrial NPP,explaining 74%of interannual variations in NPP.Over the 30-yr period,African ecosystems experienced an increase in NPP of 0.03 Pg C/yr,resulting from the combined effects of climate variability,elevated atmospheric CO_(2)concentration,and nitrogen deposition.Our further analyses show that there is a difference in NPP of 1.6 Pg C/yr between wet and dry years,indicating that interannual climatic variations play an important role in determining the magnitude of terrestrial NPP.Central Africa,dominated by tropical forests,was the most productive region and accounted for 50%of the carbon sequestered as NPP in Africa.Our results indicate that warmer and wetter climatic conditions,together with elevated atmospheric CO_(2)concentration and nitrogen deposition,have resulted in a significant increase in African terrestrial NPP during 1980-2009,with the largest contribution from tropical forests. 展开更多
关键词 AFRICA climate change dynamic land ecosystem model elevated CO_(2)concentration net primary production terrestrial ecosystems
原文传递
Variation of net primary productivity and its drivers in China’s forests during 2000-2018 被引量:8
5
作者 Yuhe Ji Guangsheng Zhou +3 位作者 Tianxiang Luo Yakir Dan Li Zhou Xiaomin Lv 《Forest Ecosystems》 SCIE CSCD 2020年第2期190-200,共11页
Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about ... Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about the key factors controlling the variability of forest NPP.Methods:This paper established a statistics-based multiple regression model to estimate forest NPP,using the observed NPP,meteorological and remote sensing data in five major forest ecosystems.The fluctuation values of NPP and environment variables were extracted to identify the key variables influencing the variation of forest NPP by correlation analysis.Results:The long-term trends and annual fluctuations of forest NPP between 2000 and 2018 were examined.The results showed a significant increase in forest NPP for all five forest ecosystems,with an average rise of 5.2 gC·m-2·year-1 over China.Over 90%of the forest area had an increasing NPP range of 0-161 gC·m-2·year-1.Forest NPP had an interannual fluctuation of 50-269 gC.m-2·year-1 for the five major forest ecosystems.The evergreen broadleaf forest had the largest fluctuation.The variability in forest NPP was caused mainly by variations in precipitation,then by temperature fluctuations.Conclusions:All five forest ecosystems in China exhibited a significant increasing NPP along with annual fluctuations evidently during 2000-2018.The variations in China’s forest NPP were controlled mainly by changes in precipitation. 展开更多
关键词 net primary production(NPP) Forest ecosystem annual precipitation NPP model FLUCTUATION VARIABILITY
下载PDF
Temporal and spatial variations of net primary productivity and its response to groundwater of a typical oasis in the Tarim Basin, China 被引量:2
6
作者 SUN Lingxiao YU Yang +7 位作者 GAO Yuting ZHANG Haiyan YU Xiang HE Jing WANG Dagang Ireneusz MALIK Malgorzata WISTUBA YU Ruide 《Journal of Arid Land》 SCIE CSCD 2021年第11期1142-1154,共13页
Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce p... Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce precipitation in the arid oasis regions, groundwater plays a key role in restricting the development of the vegetation. The Qira Oasis is located on the southern margin of the Taklimakan Desert (Tarim Basin, China) that is one of the most vulnerable regions regarding vegetation growth and water scarcity in the world. Based on remote sensing images of the Qira Oasis and daily meteorological data measured by the ground stations during the period 2006-2019, this study analyzed the temporal and spatial patterns of NPP in the oasis as well as its relation with the variation of groundwater depth using a modified Carnegie Ames Stanford Approach (CASA) model. At the spatial scale, NPP of the vegetation decreased from the interior of the Qira Oasis to the margin;at the temporal scale, NPP of the vegetation in the oasis fluctuated significantly (ranging from 29.80 to 50.07 g C/(m2•month)) but generally showed an increasing trend, with the average increase rate of 0.07 g C/(m2•month). The regions with decreasing NPP occupied 64% of the total area of the oasis. During the study period, NPP of both farmland and grassland showed an increasing trend, while that of forest showed a decreasing trend. The depth of groundwater was deep in the south of the oasis and shallow in the north, showing a gradual increasing trend from south to north. Groundwater, as one of the key factors in the surface change and evolution of the arid oasis, determines the succession direction of the vegetation in the Qira Oasis. With the increase of groundwater depth, grassland coverage and vegetation NPP decreased. During the period 2008-2015, with the recovery of groundwater level, NPP values of all types of vegetation with different coverages increased. This study will provide a scientific basis for the rational utilization and sustainable management of groundwater resources in the oasis. 展开更多
关键词 net primary productivity Carnegie Ames Stanford Approach groundwater depth land use NDVI Qira Oasis
下载PDF
Seasonal Responses of Net Primary Productivity of Vegetation to Phenological Dynamics in the Loess Plateau, China 被引量:2
7
作者 HAN Hongzhu BAI Jianjun +4 位作者 MA Gao YAN Jianwu WANG Xiaohui TA Zhijie WANG Pengtao 《Chinese Geographical Science》 SCIE CSCD 2022年第2期340-357,共18页
With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a ... With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a significant impact on net primary productivity(NPP) and affect the global carbon cycle. Currently, the seasonal response characteristics of NPP to phenological changes in dryland ecosystems are still not well defined. This article calibrated and analyzed the normalized difference vegetation index(NDVI)time series of Advanced Very-High-Resolution Radiometer(AVHRR) data from 1982 to 2015 in the Loess Plateau, China. The spatial and temporal distributions of vegetation phenology and NPP in the Loess Plateau under semihumid and semiarid conditions were investigated. The seasonal variation in the NPP response to vegetation phenology under the climate change was also analyzed. The results showed that, different from the northern forest, there was distinct spatial heterogeneity in the effect of climate change on the dynamic change in vegetation growth in the Loess Plateau: 1) an advance of the start of the growing season(SOS) and a delay of the end of the growing season(EOS) significantly increased the NPP in spring and autumn, respectively, in the humid southeast;2) in the arid northwest, the NPP did not significantly increase in spring and autumn but significantly decreased in summer. 展开更多
关键词 climate change normalized difference vegetation index PHENOLOGY net primary productivity Loess Plateau China
下载PDF
Quantitative Assessment of the Relative Contributions of Climate and Human Factors to Net Primary Productivity in the Ili River Basin of China and Kazakhstan 被引量:1
8
作者 LIU Liang GUAN Jingyun +3 位作者 HAN Wanqiang JU Xifeng MU Chen ZHENG Jianghua 《Chinese Geographical Science》 SCIE CSCD 2022年第6期1069-1082,共14页
It is necessary to quantitatively study the relationship between climate and human factors on net primary productivity(NPP)inorder to understand the driving mechanism of NPP and prevent desertification.This study inve... It is necessary to quantitatively study the relationship between climate and human factors on net primary productivity(NPP)inorder to understand the driving mechanism of NPP and prevent desertification.This study investigated the spatial and temporal differentiation features of actual net primary productivity(ANPP)in the Ili River Basin,a transboundary river between China and Kazakhstan,as well as the proportional contributions of climate and human causes to ANPP variation.Additionally,we analyzed the pixel-scale relationship between ANPP and significant climatic parameters.ANPP in the Ili River Basin increased from 2001 to 2020 and was lower in the northeast and higher in the southwest;furthermore,it was distributed in a ring around the Tianshan Mountains.In the vegetation improvement zone,human activities were the dominant driving force,whereas in the degraded zone,climate change was the primary major driving force.The correlation coefficients of ANPP with precipitation and temperature were 0.322 and 0.098,respectively.In most areas,there was a positive relationship between vegetation change,temperature and precipitation.During 2001 to 2020,the basin’s climatic change trend was warm and humid,which promoted vegetation growth.One of the driving factors in the vegetation improvement area was moderate grazing by livestock. 展开更多
关键词 net primary productivity(NPP) actual net primary productivity(ANPP) climate change human activities Ili River Basin
下载PDF
Spatiotemporal variation in vegetation net primary productivity and its relationship with meteorological factors in the Tarim River Basin of China from 2001 to 2020 based on the Google Earth Engine 被引量:1
9
作者 CHEN Limei Abudureheman HALIKE +1 位作者 YAO Kaixuan WEI Qianqian 《Journal of Arid Land》 SCIE CSCD 2022年第12期1377-1394,共18页
Vegetation growth status is an important indicator of ecological security.The Tarim River Basin is located in the inland arid region of Northwest China and has a highly fragile ecological environment.Assessing the veg... Vegetation growth status is an important indicator of ecological security.The Tarim River Basin is located in the inland arid region of Northwest China and has a highly fragile ecological environment.Assessing the vegetation net primary productivity(NPP)of the Tarim River Basin can provide insights into the vegetation growth variations in the region.Therefore,based on the Google Earth Engine(GEE)cloud platform,we studied the spatiotemporal variation of vegetation NPP in the Tarim River Basin(except for the eastern Gobi and Kumutag deserts)from 2001 to 2020 and analyzed the correlations between vegetation NPP and meteorological factors(air temperature and precipitation)using the Sen slope estimation method,coefficient of variation,and rescaled range analysis method.In terms of temporal characteristics,vegetation NPP in the Tarim River Basin showed an overall fluctuating upward trend from 2001 to 2020,with the smallest value of 118.99 g C/(m2•a)in 2001 and the largest value of 155.07 g C/(m2•a)in 2017.Regarding the spatial characteristics,vegetation NPP in the Tarim River Basin showed a downward trend from northwest to southeast along the outer edge of the study area.The annual average value of vegetation NPP was 133.35 g C/(m2•a),and the area with annual average vegetation NPP values greater than 100.00 g C/(m2•a)was 82,638.75 km2,accounting for 57.76%of the basin.The future trend of vegetation NPP was dominated by anti-continuity characteristic;the percentage of the area with anti-continuity characteristic was 63.57%.The area with a significant positive correlation between vegetation NPP and air temperature accounted for 53.74%of the regions that passed the significance test,while the area with a significant positive correlation between vegetation NPP and precipitation occupied 98.68%of the regions that passed the significance test.Hence,the effect of precipitation on vegetation NPP was greater than that of air temperature.The results of this study improve the understanding on the spatiotemporal variation of vegetation NPP in the Tarim River Basin and the impact of meteorological factors on vegetation NPP. 展开更多
关键词 vegetation net primary productivity(NPP) air temperature precipitation Hurst index Google Earth Engine Tarim River Basin
下载PDF
Identification of Milankovitch Cycles and Calculation of Net Primary Productivity of Paleo-peatlands using Geophysical Logs of Coal Seams 被引量:1
10
作者 SHAO Longyi WEN He +4 位作者 GAO Xiangyu Baruch SPIRO WANG Xuetian YAN Zhiming David J.LARGE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第6期1830-1841,共12页
Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining... Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining the rate of carbon accumulation requires a measure of time contained within the coal.This study aimed to determine this rate via the identification of Milankovitch orbital cycles in the coals.The geophysical log is an ideal paleoclimate proxy and has been widely used in the study of sedimentary records using spectral analysis.Spectral analyses of geophysical log from thick coal seams can be used to identify the Milankovitch cycles and to calculate the period of the coal deposition.By considering the carbon loss during coalification,the long-term average carbon accumulation rate and net primary productivity(NPP)of paleo-peatlands in coal seams can be obtained.This review paper presents the procedures of analysis,assessment of results and interpretation of geophysical logs in determining the NPP of paleo-peatlands. 展开更多
关键词 paleo-peatlands Milankovitch cycle carbon accumulation rate net primary productivity(NPP) coal seam
下载PDF
Research Advances in Net Primary Productivity of Terrestrial Ecosystem 被引量:1
11
作者 Yixin Xu Xiaoling Hu +1 位作者 Zhao Liu Huayong Zhang 《Journal of Geoscience and Environment Protection》 2020年第8期48-54,共7页
The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global c... The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global change and terrestrial ecosystems. This article reviews the current research status of net primary productivity of terrestrial vegetation, and comprehensively analyzes the advantages and disadvantages of three types of productivity estimation models, climate relative models, biogeochemical models, and light energy utilization models. The light energy utilization models have become the mainstream method for estimating vegetation net primary productivity because they can directly use remote sensing data. However, there are still many deficiencies in the estimation of vegetation net primary productivity, which need to be further improved and tested. 展开更多
关键词 net primary Productivity Productivity Model Terrestrial Vegetation Global Change
下载PDF
Net Primary Productivity and Management Potential of Artificial Pinus tabulaeformis Forest in Shanxi Province
12
作者 Lanying FAN Jianguo CHANG +1 位作者 Yaqin CUI Tuohuan SUN 《Asian Agricultural Research》 2018年第3期5-9,14,共6页
The dynamic variation of net primary productivity of artificial Pinus tabulaeformis forest was studied in Shanxi Province,and potential productivity of artificial forest was predicted to provide reference for improvin... The dynamic variation of net primary productivity of artificial Pinus tabulaeformis forest was studied in Shanxi Province,and potential productivity of artificial forest was predicted to provide reference for improving quality of regional forest stand. The regression equation was established by using the stratification and harvesting method with the relative growth model. Cumulative method and Thornthwaite Memorial model was used to estimate the actual and potential productivity of the forest. The productivity of P. tabulaeformis forest increased with the increase of age and started decrease with the mature period. The actual productivity of P. tabulaeformis forest was 4. 462 t/( ha·year); the contribution rate of trees was 72. 17% of the total productivity,and with the increase of age,the total biomass increased but productivity decreased at late near-mature forest; the contribution rate of herb layer was 21. 16% in the young forest stage,and then decreased gradually. On the contrary,the contribution rate of shrub layer increased gradually,and the contribution rate of the grassland was more than that of the herb layer,so as the key period of structural management; the average potential productivity of forest was 8. 422 t/( ha·year),and the potential space of P. tabulaeformis was at least 32% in Shanxi Province. In conclusion,the potential space of productivity of P. tabulaeformis was at least 32%,and the primary limiting factor of P. tabulaeformis forest productivity in Shanxi Province was rainfall. 展开更多
关键词 Pinus tabuliformis Individual tree biomass model net primary productivity Potential productivity
下载PDF
Response of vegetation net primary productivity to climate change scenarios in the Loess Plateau of China--A case study of the Yangou watershed
13
作者 WANG Kai-bo SHANGGUAN Zhou-ping 《地球环境学报》 2012年第6期1156-1164,共9页
Vegetation net primary productivity(NPP)is a sensitive indicator to characterize the response of terrestrial ecosystems to the climate change.Projections of the NPP changes of the Loess Plateau under future climate sc... Vegetation net primary productivity(NPP)is a sensitive indicator to characterize the response of terrestrial ecosystems to the climate change.Projections of the NPP changes of the Loess Plateau under future climate scenarios have great significances in revealing the interactions among terrestrial ecosystems and climatic systems,as well as instructing future vegetation construction of this region.Here,we carried out a case study on the Yangou watershed in the Loess Plateau.Using the vegetation-producing process model(VPP)established for such small watersheds,we simulated the NPP of the Yangou watershed under different scenarios of climate changes.The results showed that the NPP significandy increased with the precipitation increasing and evidently decreased with the temperature increasing where the climate change occurred in the whole year or in the summer half year.However,where the climate change occurred in the winter half year,the increased precipitation had little effect on the NPP,and the increased temperature significantly reduced the NPP.There were clear differences among the response sensitivities of different vegetation types with trees and shrubs were more sensitive to the changes in temperature and precipitation than crops and grasses.Currently,the most favourable climate change scenario to the NPP in the Yangou watershed was T0P15 under which the precipitation increased by 15%and the temperature did not changed,in the whole year;in the meantime,the most unfavourable climate change scenarios was T2P-15 under which the precipitation declined by 15%and the temperature increased by 2℃,in the whole year. 展开更多
关键词 Climate change Loess Plateau net primary productivity(NPP) small watershed vegetation-producing process model(VPP)
下载PDF
Ecosystem Services Evaluation of Karst New Urban Areas Based on Net Primary Productivity of Guanshanhu District, Guiyang, Guizhou Province, China
14
作者 Ou Deng Yiqiu Li +1 位作者 Ruoshuang Li Guangbin Yang 《Open Journal of Ecology》 2022年第6期377-390,共14页
Net Primary Productivity (NPP) is the basis of the material and energy transport calculation in ecosystem studies. NPP directly reflects the production capacity of plant communities under natural conditions. Ecosystem... Net Primary Productivity (NPP) is the basis of the material and energy transport calculation in ecosystem studies. NPP directly reflects the production capacity of plant communities under natural conditions. Ecosystem services are hot topics in the field of ecology. Many studies calculate ecosystem service value based on NPP. Taking Guanshanhu District of Guiyang City, Guizhou Province as the research object, using TM, ETM<sup>+</sup>, Gaofen2 and MOD17A3HGF.006 as data sources, this paper analyzed the change of ecosystem service value based on NPP in 2000, 2010 and 2020. The results showed that the area of forest ecosystem increased during 2000-2010 and decreased during 2010-2020. The artificial surface grew rapidly from 1146.82 hm<sup>2</sup> to 7544.29 hm<sup>2</sup> during 2000-2020. The farmland ecosystem decreased from 13308.29 hm<sup>2</sup> to 6342.33 hm<sup>2</sup> during 2000-2020. With the dynamic changes in ecosystem spatial distribution and component structure, the total NPP in 2000, 2010 and 2020 was 12.58 × 10<sup>4</sup> t, 11.90 × 10<sup>4</sup> t and 11.78 × 10<sup>4</sup> t, respectively, showing a decreasing trend. The total value of natural and semi-natural ecosystems services based on NPP showed an increasing trend, which was ¥ 6.938 × 10<sup>8</sup> in 2000, ¥ 8.052 × 10<sup>8</sup> in 2010 and ¥ 10.306 × 10<sup>8</sup> in 2020 respectively. The ecosystem contributed the most to the ecological service value in 2000 was farmland, but in 2010 and 2020, it was the forest ecosystem. The ecological service value of grassland and wetland was relatively small, while the ratio of the wetland ecological service value displayed a decreasing trend. In the future, it is necessary to establish a strict pretrial system for land use, so as to effectively protect the natural and semi-natural ecosystems and fulfill the growing ecological demands of residents. 展开更多
关键词 KARST net primary Productivity (NPP) Ecological Service Physical Quantity Ecological Service Value Guanshanhu District
下载PDF
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China
15
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao Irrigation District
下载PDF
Elevation response of above-ground net primary productivity for Picea crassifolia to climate change in Qilian Mountains of Northwest China based on tree rings
16
作者 WU Xuan JIAO Liang +3 位作者 DU Dashi XUE Ruhong WEI Mengyuan ZHANG Peng 《Journal of Geographical Sciences》 SCIE CSCD 2024年第1期146-164,共19页
Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature,but terrestrial net primary productivity(NPP)data estimated without accou... Current ecosystem models used to simulate global terrestrial carbon balance generally suggest that terrestrial landscapes are stable and mature,but terrestrial net primary productivity(NPP)data estimated without accounting for disturbances in species composition,environment,structure,and ecological characteristics will reduce the accuracy of the global carbon budget.Therefore,the steady-state assumption and neglect of elevation-related changes in forest NPP is a concern.The Qilian Mountains are located in continental climate zone,and vegetation is highly sensitive to climate change.We quantified aboveground biomass(AGB)and aboveground net primary productivity(ANPP)sequences at three elevations using field-collected tree rings of Picea crassifolia in Qilian Mountains of Northwest China.The results showed that(1)There were significant differences between AGB and ANPP at the three elevations,and the growth rate of AGB was the highest at the low elevation(55.99 t ha^(–1)10a^(–1)).(2)There are differences in the response relationship between the ANPP and climate factors at the three elevations,and drought stress is the main climate signal affecting the change of ANPP.(3)Under the future climate scenario,drought stress intensifies,and the predicted decline trend of ANPP at the three elevations from mid-century to the end of this century is–0.025 t ha^(–1)10a^(–1),respectively;–0.022 t ha^(–1)10a^(–1);At–0.246 t ha^(–1)10a^(–1),the level of forest productivity was significantly degraded.The results reveal the elevation gradient differences in forest productivity levels and provide key information for studying the carbon sink potential of boreal forests. 展开更多
关键词 global climate change tree ring aboveground net primary productivity aboveground biomass drought stress Qilian Mountains
原文传递
Simulation of the Ecosystem Productivity Responses to Aerosol Diffuse Radiation Fertilization Effects over the Pan-Arctic during 2001–19
17
作者 Zhiding ZHANG Xu YUE +3 位作者 Hao ZHOU Jun ZHU Yadong LEI Chenguang TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期84-96,共13页
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil... The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming. 展开更多
关键词 diffuse radiation fertilization effects anthropogenic aerosols natural aerosols pan-Arctic net primary productivity
下载PDF
Spatiotemporal characteristics and influencing factors of ecosystem services in Central Asia 被引量:1
18
作者 YAN Xue LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2023年第1期1-19,共19页
Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships b... Land use/land cover(LULC)change and climate change are two major factors affecting the provision of ecosystem services which are closely related to human well-being.However,a clear understanding of the relationships between these two factors and ecosystem services in Central Asia is still lacking.This study aimed to comprehensively assess ecosystem services in Central Asia and analyze how they are impacted by changes in LULC and climate.The spatiotemporal patterns of three ecosystem services during the period of 2000-2015,namely the net primary productivity(NPP),water yield,and soil retention,were quantified and mapped by the Carnegie-Ames-Stanford Approach(CASA)model,Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model,and Revised Universal Soil Loss Equation(RUSLE).Scenarios were used to determine the relative importance and combined effect of LULC change and climate change on ecosystem services.Then,the relationships between climate factors(precipitation and temperature)and ecosystem services,as well as between LULC change and ecosystem services,were further discussed.The results showed that the high values of ecosystem services appeared in the southeast of Central Asia.Among the six biomes(alpine forest region(AFR),alpine meadow region(AMR),typical steppe region(TSR),desert steppe region(DSR),desert region(DR),and lake region(LR)),the values of ecosystem services followed the order of AFR>AMR>TSR>DSR>DR>LR.In addition,the values of ecosystem services fluctuated during the period of 2000-2015,with the most significant decreases observed in the southeast mountainous area and northwest of Central Asia.LULC change had a greater impact on the NPP,while climate change had a stronger influence on the water yield and soil retention.The combined LULC change and climate change exhibited a significant synergistic effect on ecosystem services in most of Central Asia.Moreover,ecosystem services were more strongly and positively correlated with precipitation than with temperature.The greening of desert areas and forest land expansion could improve ecosystem services,but unreasonable development of cropland and urbanization have had an adverse impact on ecosystem services.According to the results,ecological stability in Central Asia can be achieved through the natural vegetation protection,reasonable urbanization,and ecological agriculture development. 展开更多
关键词 ecosystem services land use/land cover change climate change net primary productivity water yield soil retention Central Asia
下载PDF
Climate Change Impacts on Agroecosystems in China:Processes,Mechanisms and Prospects
19
作者 BAO Lun YU Lingxue +3 位作者 LI Ying YAN Fengqin LYNE Vincent REN Chunying 《Chinese Geographical Science》 SCIE CSCD 2023年第4期583-600,共18页
Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progres... Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progress for decision making.However,the lack of quantitative and objective analyses to ensure the stability and development of agroecosystems increases the complexity of agro-climatic mechanisms,which leads to uncertainty and undesirable consequences.In this paper,we review the characteristics of climate change in China(1951–2020),reveal the mechanisms of agroecosystem structure in response to climate,and identify challenges and opportunities for future efforts in the context of research progress.The aim is to improve the scientific validity and relevance of future research by clarifying agro-climatic response mechanisms.The results show that surface temperature,precipitation,and frequency of extreme weather events have increased to varying degrees in major agricultural regions of China in 1951–2020.And they have strong geographic variation,which has resulted in droughts in the north and floods in the south.Moreover,climate change has complicated the mechanisms of soil moisture,Net Primary Productivity(NPP),soil carbon pool,and crop pest structure in agroecosystems.This lends to a reduction in soil water holding capacity,NPP,soil carbon content,and the number of natural enemies of diseases and insects,which in turn affects crop yields.However,human interventions can mitigate the deterioration of these factors.We have also realized that the methodology and theory of historical research poses a great challenge to future agroecosystem.Historical and projected climate trends identified current gaps in interdisciplinary integration and multidisciplinary research required to manage diverse spatio-temporal climate change impacts on agroecosystems.Future efforts should highlight integrated management and decision making,multidisciplinary big data coupling,and numerical simulations to ensure sustainable agricultural development,ecological security,and food security in China. 展开更多
关键词 climate change AGROECOSYSTEM net primary Productivity(NPP) soil carbon pool risk management crop yield
下载PDF
Phosphorus Limitation on Carbon Sequestration in China under RCP8.5
20
作者 Jing PENG Li DAN Xiba TANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1187-1198,共12页
Currently,there is a lack of understanding regarding carbon(C)sequestration in China arising as a result of phosphorus(P)limitation.In this study,a global land surface model(CABLE)was used to investigate the response ... Currently,there is a lack of understanding regarding carbon(C)sequestration in China arising as a result of phosphorus(P)limitation.In this study,a global land surface model(CABLE)was used to investigate the response of C uptake to P limitation after 1901.In China,P limitation resulted in reduced net primary production(NPP),heterotrophic respiration,and net ecosystem production(NEP)in both the 2030s and the 2060s.The reductions in NEP in the period2061–70 varied from 0.32 Pg C yr^(-1)in China to 5.50 Pg C yr^(-1)at the global scale,translating to a decrease of 15.0%for China and 7.6%globally in the period 2061–70,relative to the changes including C and nitrogen cycles.These ranges reflect variations in the magnitude of P limitation on C uptake(or storage)at the regional and global scales.Both in China and at the global scale,these differences can be attributed to differences in soil nutrient controls on C uptake,or positive feedback between NPP and soil decomposition rates,or both.Our results highlight the strong ability of P limitation to influence the pattern,response,and magnitude of C uptake under future conditions(2030s–2060s),which may help to clarify the potential influence of P limitation when projecting C uptake in China. 展开更多
关键词 phosphorus cycle carbon-nitrogen cycle carbon sink in China carbon storage in China net primary productivity climate change
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部