期刊文献+
共找到3,591篇文章
< 1 2 180 >
每页显示 20 50 100
Analysis of Heat Transport in a Powell-Eyring Fluid with Radiation and Joule Heating Effects via a Similarity Transformation 被引量:1
1
作者 Tahir Naseem Iqra Bibi +1 位作者 Azeem Shahzad Mohammad Munir 《Fluid Dynamics & Materials Processing》 EI 2023年第3期663-677,共15页
Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.Th... Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases. 展开更多
关键词 Stretched flow powell-eyring model heat flux model radiated effect relaxation phenomenon numerical study
下载PDF
SEASONAL VARIATIONS OF NET RADIATIVE HEATING IN THE EARTH-ATMOSPHERIC SYSTEM AND ITS RELATIONS TOASIAN SUMMER MONSOON
2
作者 黎伟标 罗会邦 《Journal of Tropical Meteorology》 SCIE 1999年第2期171-178,共8页
Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net... Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net radiative heating in the earth-atmospheric system and its relationship with the Asian summer monsoon. As is shown in the result, the zonal deviations of the zonal deviations of the heating, manifested as mutations in direction between land and sea with seasons, is an indication of the thermal difference between them.Being a month earlier than that in the general circulation from spring to summer, the seasonal reversal of directionmay be playing an essential role in triggering the onset and withdrawal of summer monsoon in Asia. 展开更多
关键词 NET radiation heating in the each-atmospheric system difference between land and sea seasonalvariations. Asian summer MONSOON
下载PDF
Insight into the dynamics of non-Newtonian Carreau fluid when viscous dissipation,entropy generation,convective heating and diffusion are significant
3
作者 ZHOU Shuang-shuang Muhammad Ijaz Khan +1 位作者 Sami Ullah Khan Sumaira Qayyum 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期34-46,共13页
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m... The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter. 展开更多
关键词 heat generation surface reaction CNTs based nano uid stretching/shrinking sheet thermal radiation
下载PDF
Lattice Boltzmann method formulation for simulation of thermal radiation effects on non-Newtonian Al_(2)O_(3) free convection in entropy determination
4
作者 M.NEMATI M.SEFID +1 位作者 A.KARIMIPOUR A.J.CHAMKHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1085-1106,共22页
The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen... The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. 展开更多
关键词 thermal performance analysis heat absorption/generation power-law(PL)Al_(2)O_(3)nanofluid magnetohydrodynamics natural convection volumetric radiation inclined cavity
下载PDF
Conducting Rubber Force Sensor: Transient Characteristics and Radiation Heating Effect 被引量:1
5
作者 Masato Ohmukai Yasushi Kami Ken Ashida 《Journal of Sensor Technology》 2013年第3期36-41,共6页
Compression force sensors are indispensable to tactile sensors in humanoid robots. We are investigating the application of low-cost electrically conducting rubber sheets to force sensors, of which the biggest problem ... Compression force sensors are indispensable to tactile sensors in humanoid robots. We are investigating the application of low-cost electrically conducting rubber sheets to force sensors, of which the biggest problem is its poor reproducibility. We have found that the deposition of aluminum by a vacuum evaporation method shows such an excellent characteristic that the sensor can be used in a wide range under 10.33 N/cm2. In this article, we investigated time response of the sensors and also studied how the radiation heating during the vacuum evaporation process for Al deposition affected their sensing property. We found that the radiation heating induces deterioration from the point of view of standard deviation of the output voltage of the sensors at a transient region. We convince that a low-temperature Al deposition method should be developed to form electrodes on the electrical conducting rubber sensors. 展开更多
关键词 CONDUCTING RUBBER Force Sensor ELECTRODE VACUUM Deposition radiation heating
下载PDF
Characteristics of radiation and convection heat transfer in indirect near-infrared-ray heating chamber 被引量:1
6
作者 CHOI Hoon-ki YOO Geun-jong KIM Churl-hwan 《Journal of Central South University》 SCIE EI CAS 2011年第3期731-738,共8页
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation,conduction and convection in indirect near infrared ray (NIR) heating chamber.The effects of important design parame... Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation,conduction and convection in indirect near infrared ray (NIR) heating chamber.The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers.The Reynolds numbers were varied from 103 to 3×106,which was defined based on the hydraulic diameter of the heat absorbing cylinder.Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer.As the Reynolds number increases,the convection heat transfer rate is increased while the radiation heat transfer rate is decreased.The average convection heat transfer rate follows a power rule of the Reynolds number.Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer. 展开更多
关键词 对流换热 辐射换热 传热特性 加热室 近红外光 间接 雷诺数 传热率
下载PDF
Effects of Thermal Radiation and Radiation Absorption on Flow Past an Impulsively Started Infinite Vertical Plate with Newtonian Heating and Chemical Reaction
7
作者 Swetha Ravi Jagdish Prakash +1 位作者 Viswanatha Reddy Gottam Vijaya Kumar Varma Sibyala 《Open Journal of Fluid Dynamics》 2015年第4期364-379,共16页
A perfect solution to the present natural convective flow problem of a vertical transfinite plate owing to the impulsive motion in the ubiety of first ordered chemical reaction, radiation absorption, radiation, Newton... A perfect solution to the present natural convective flow problem of a vertical transfinite plate owing to the impulsive motion in the ubiety of first ordered chemical reaction, radiation absorption, radiation, Newtonian heating and species concentration in its plane is evolved by applying the method of Laplace transforms in closed form at the plate. Exact results for velocity, temperature, concentration fields are prevailed and expressions for heat and mass transfer rates are also found. The effects are analyzed for the respective invariables for both ammonia and water vapor. 展开更多
关键词 NEWTONIAN heating Natural Convection Chemical Reaction INCOMPRESSIBLE Fluid radiation Absorption and radiation
下载PDF
Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on MHD Forced Convection Flow with Uniform Surface Temperature
8
作者 M. Y. Abdollahzadeh Jamalabadi Jae Hyun Park 《Open Journal of Fluid Dynamics》 2014年第2期125-132,共8页
In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface tempe... In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface temperature. Numerical results were obtained by solving the nonlinear governing momentum and energy equations with steady state fully developed assumptions by finite difference method. The Lorentz force in momentum and Joule heating, and viscous dissipation in energy equation with the Rossel and approximation are assumed to increase the knowledge of the details of the temperature and flow field in order to design a MHD pump. The purpose of this study is the parametric study of a Newtonian fluid in a MHD pump. The values of maximum velocity, fully developed Nusselt number for different values of magnetic density flux, Brinkman number, viscous heating and radiation number are obtained. However, the maximum temperature stays almost constant with magnetic field, as current increases, the velocity and the temperature increase too. Besides, the increase of thermal radiation number causes the increase in effective thermal conductivity and decrease in thermal boundary layer and the Nusselt number at wall. 展开更多
关键词 FORCED CONVECTION Thermal radiation MAGNETOHYDRODYNAMIC Pump Internal heating VISCOUS DISSIPATION Roseland Model
下载PDF
Conjugate Effects of Radiation and Joule Heating on Magnetohydrodynamic Free Convection Flow along a Sphere with Heat Generation
9
作者 Md Miraj Ali Md Abdul Alim Laek Sazzad Andallah 《American Journal of Computational Mathematics》 2011年第1期18-25,共8页
The conjugate effects of radiation and joule heating on magnetohydrodynamic (MHD) free convection flow along a sphere with heat generation have been investigated in this paper. The governing equations are transformed ... The conjugate effects of radiation and joule heating on magnetohydrodynamic (MHD) free convection flow along a sphere with heat generation have been investigated in this paper. The governing equations are transformed into dimensionless non-similar equations by using set of suitable transformations and solved numerically by the finite difference method along with Newton’s linearization approximation. Attention has been focused on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically for some selected values of parameters set consisting of heat generation parameter Q, radiation parameter Rd, magnetic parameter M, joule heating parameter J and the Prandtl number Pr. 展开更多
关键词 Natural Convection Thermal radiation Prandtl NUMBER Joule heating heat Generation MAGNETOHYDRODYNAMICS Nusselt NUMBER
下载PDF
Joule Heating and Thermal Radiation Effects on MHD Boundary Layer Flow of a Nanofluid over an Exponentially Stretching Sheet in a Porous Medium
10
作者 Jakkula Anand Rao Gandamalla Vasumathi Jakkula Mounica 《World Journal of Mechanics》 2015年第9期151-164,共14页
A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to b... A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms. 展开更多
关键词 EXPONENTIALLY STRETCHING Sheet MHD Thermal radiation Chemical Reaction Joule heating heat and Mass Transfer Porous Medium
下载PDF
Effect of Sinusoidal Heating on Natural Convection Coupled to Thermal Radiation in a Square Cavity Subjected to Cross Temperature Gradients
11
作者 Rachid El Ayachi Abdelghani Raji +2 位作者 Mohamed Naimi Hassan Elharfi Mohammed Hasnaoui 《Journal of Electronics Cooling and Thermal Control》 2013年第1期7-21,共15页
Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are cent... Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining portions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude and the period of the temporally sinusoidal temperature, the emissivity of the walls , the relative lengths of the active elements and the Rayleigh number . The effect of such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study. 展开更多
关键词 Natural Convection Thermal radiation heatlines Cross Gradients of Temperature Periodic heating Resonant heat Transfer Numerical Study
下载PDF
Numerical Modelling of Radiation-Convection Coupling of Greenhouse Using Underfloor Heating
12
作者 Yan Jia Can Wang +1 位作者 Chi Zhang Wenxiong Li 《Open Journal of Fluid Dynamics》 2017年第3期448-461,共14页
Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants gr... Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants growth. Adopting underground heating to increase the temperature can effectively improve the yield of crops. The objective of our study was to model the heat transfer of greenhouse underfloor heating which is analyzed and simplified based on the FLUENT software by changing the several important factors that affect the temperature distribution: pipe diameter, pipe spacing, laying depth, supplied water temperature and flow rate, as boundary conditions to simulate the changes of the soil temperature field around the winter night environment. Researching the temperature distribution of the greenhouse, the soil surface and the plant root layer under the different parameters and the basic rules of the heating system are summarized. The results show that the water supply temperature, pipe spacing and diameter of the pipe has a greater impact on the ground and room temperature, and the laying depth has greater impact on the temperature uniformity of the ground, the velocity of water in pipe has little impact on the uniformity of ground temperature. 展开更多
关键词 GREENHOUSE Underfloor heating radiation-Convection COUPLING CFD
下载PDF
Surface Heat Budget and Solar Radiation Allocation at a Melt Pond During Summer in the Central Arctic Ocean 被引量:5
13
作者 ZHANG Shugang ZHAO Jinping +1 位作者 SHI Jiuxin JIAO Yutian 《Journal of Ocean University of China》 SCIE CAS 2014年第1期45-50,共6页
The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010 Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a ... The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010 Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a melt pond surface is proportional to the air temperature above it. However, the linear relationship between the two varies, depending on whether the air temperature is higher or lower than 0℃. The melt pond surface temperature is strongly influenced by the air temperature when the latter is lower than 0℃. Both net longwave radiation and turbulent heat flux can cause energy loss in a melt pond, but the loss by the latter is larger than that by the former. The turbulent heat flux is more than twice the net longwave radiation when the air temperature is lower than 0℃. More than 50% of the radiation energy entering the pond surface is absorbed by pond water. Very thin ice sheet on the pond surface(black ice) appears when the air temperature is lower than 0℃; on the other hand, only a small percentage(5.5%) of net longwave in the solar radiation is absorbed by such a thin ice sheet. 展开更多
关键词 heat BUDGET MELT POND solar radiation ARCTIC
下载PDF
A new hybrid method—combined heat flux method with Monte-Carlo method to analyze thermal radiation 被引量:2
14
作者 Zengwu Zhao Daqiang Cang +2 位作者 Wenfei Wu Yike Li Baowei Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期25-28,共4页
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth... A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method". 展开更多
关键词 radiation heat transfer SCATTERING numerical simulation Monte-Carlo method heat flux method
下载PDF
A Concise Model and Analysis for Heat-Induced Withdrawal Reflex Caused by Millimeter Wave Radiation 被引量:5
15
作者 Hongyun Wang Wesley A. Burgei Hong Zhou 《American Journal of Operations Research》 2020年第2期31-81,共51页
In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given ... In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given spatial temperature profile. Our model is distilled from sub-step components in the ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our model has only two parameters: the activation temperature of nociceptors and the critical threshold on the activated volume. When the spatial temperature profile is measurable, the two parameters can be determined from test data. We connect this dose-response relation to a temperature evolution model for electromagnetic heating. The resulting composite model governs the process from the electromagnetic beam deposited on the skin to the binary outcome of subject’s reflex response. We carry out non-dimensionalization in the time evolution model. The temperature solution of the non-dimensional system is the product of the applied power density and a parameter-free function. The effects of physical parameters are contained in non-dimensional time and depth. Scaling the physical temperature distribution into a parameter-free function greatly simplifies the analytical solution, and helps to pinpoint the effects of beam spot area and applied power density. With this formulation, we study the theoretical behaviors of the system, including the time of reflex, effect of heat conduction, biological latency in observed reflex, energy consumption by the time of reflex, and the strategy of selecting test conditions in experiments for the purpose of inferring model parameters from test data. 展开更多
关键词 MILLIMETER Wave radiation heat-Induced Pain WITHDRAWAL REFLEX DOSE-RESPONSE Model Biological Latency Non-Dimensionalization Effect of heat Conduction
下载PDF
Study on the Influence of Piloti on Mean Radiant Temperature in Residential Blocks by 3-D Unsteady State Heat Balance Radiation Calculation 被引量:1
16
作者 Tian-Yu Xi Jian-Hua Ding Hong Jin 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第4期91-95,共5页
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve... Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks. 展开更多
关键词 piloti mean radiant temperature 3-D unsteady state heat balance radiation calculation residential block
下载PDF
Slip Condition Effects on Unsteady MHD Fluid Flow with Radiative Heatflux over a Porous Medium
17
作者 Abdullahi Ahmad Muhammad Nasir Sarki 《Advances in Pure Mathematics》 2023年第3期153-166,共14页
The objective of this paper is to study unsteady magneto hydrodynamic (MHD) free flow of viscoelastic fluid (Walter’s B) past an infinite vertical plate through porous medium. The temperature is assumed to be oscilla... The objective of this paper is to study unsteady magneto hydrodynamic (MHD) free flow of viscoelastic fluid (Walter’s B) past an infinite vertical plate through porous medium. The temperature is assumed to be oscillating with time. The solution obtained shows different profiles of effects of slip conditions on primary and secondary velocity. Also, the effects of various parameters on temperature, concentration, primary and secondary velocity profiles were presented graphically. The result indicated the secondary velocity is enhanced with increase in slip parameter. Primary velocity demonstrated opposite trend. 展开更多
关键词 radiation Slip Parameter MHD heat Flux and Porous Medium
下载PDF
Dynamical Analysis of Radiation and Heat Transfer on MHD Second Grade Fluid 被引量:1
18
作者 Aziz-Ur-Rehman Muhammad Bilal Riaz +1 位作者 Syed Tauseef Saeed Shaowen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期689-703,共15页
Convective flow is a self-sustained flow with the effect of the temperature gradient.The density is non-uniform due to the variation of temperature.The effect of the magnetic flux plays a major role in convective flow... Convective flow is a self-sustained flow with the effect of the temperature gradient.The density is non-uniform due to the variation of temperature.The effect of the magnetic flux plays a major role in convective flow.The process of heat transfer is accompanied by a mass transfer process;for instance,condensation,evaporation,and chemical process.Due to the applications of the heat and mass transfer combined effects in a different field,the main aim of this paper is to do a comprehensive analysis of heat and mass transfer of MHD unsteady second-grade fluid in the presence of ramped boundary conditions near a porous surface.The dynamical analysis of heat transfer is based on classical differentiation with no memory effects.The non-dimensional form of the governing equations of the model is developed.These are solved by the classical integral(Laplace)transform technique/method with the convolution theorem and closed-form solutions are attained for temperature,concentration,and velocity.The physical aspects of distinct parameters are discussed via graph to see the influence on the fluid concentration,velocity,and temperature.Our results suggest that the velocity profile decrease by increasing the Prandtl number.The existence of a Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.Furthermore,to validate our results,some results are recovered from the literature. 展开更多
关键词 heat transfer magnetic effect ramped conditions porous medium Laplace transform thermal radiation
下载PDF
Influence of Chemical Reaction and Thermal Radiation on MHD Boundary Layer Flow and Heat Transfer of a Nanofluid over an Exponentially Stretching Sheet 被引量:1
19
作者 N. G. Rudraswamy B. J. Gireesha 《Journal of Applied Mathematics and Physics》 2014年第2期24-32,共9页
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch... In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms. 展开更多
关键词 NANOFLUID EXPONENTIALLY STRETCHING Sheet Chemical Reaction Thermal radiation Boundary Layer Flow heat and Mass Transfer
下载PDF
Experimental Research of the Radiator Thermal Performance Test Equipment and Its Application in Heating System 被引量:1
20
作者 Lian Zhang Linjun Fan +3 位作者 Xin Xu Baowen Cao Heng Zhang Lihong Song 《Energy Engineering》 EI 2021年第2期399-410,共12页
Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflo... Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflow measuring are the vital factors for a radiator thermal performance test equipment.Based on the above back-ground,this paper improves the measurement and control system of radiator thermal performance test equip-ment,which improves the accuracy of the radiator thermal performance test equipment.This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment.Theflow rate ranges from 175 kg/h to 178 kg/h under different conditions.The average is 176.5 kg/h and the deviation rates are from 1.62%to 1.97%.The heat produced under various conditions is different.The maximum is 4.3 kW and the minimum is 4.2 kW for condition 1,the maximum is 3.3 kW and the minimum is 3.2 kW for condition 2 and the maximum is 1.95 kW and the minimum is 1.89 kW for condition 3.However,the deviation rate is about 2.9%,which shows that the device has high stability and high precision.This paper studies a new electronic heat cost allocate meter test method by radiator thermal performance test equipment at the same time.This paper tests temperature changes through four measures points and gets a result appeared as a heat backup which should be avoided when using in the test of electronic heat cost allocate meter.Some experiences and references could be gained for further research in the heating system from this test and research. 展开更多
关键词 Electronic heat cost allocate meter radiatOR precise control heating
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部