Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
As a kind of natural energy from the earth’s interior,geothermal energy is characterized by large reserve,wide distribution,good stability,high utilization coefficient,and positive effects of energy-saving and emissi...As a kind of natural energy from the earth’s interior,geothermal energy is characterized by large reserve,wide distribution,good stability,high utilization coefficient,and positive effects of energy-saving and emission-reduction.It is of great significance for promoting green and low-carbon energy transition,reducing greenhouse gas emission,and achieving global climate goals and sustainable economic development.Hence,it has been highly recognized and valued by lots of countries around the world,and has become one of the most important clean energy sources that countries are accelerating to develop and utilize.The potential of the global geothermal energy resource is estimated to be 1.25×1027 J,equivalent to 4.27×10^(16) t of standard coal,among which the geothermal resource between 0 km and 5 km is 1.45×10^(26) J,equivalent to 4.95×1015 t of standard coal(China Geological Survey,2018).展开更多
Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has att...Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.展开更多
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to in...Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.展开更多
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential...Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.展开更多
Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage d...Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage due to its superior thermal properties.Moreover,the use of CO_(2)plumes for geothermal energy storage mitigates the greenhouse effect by storing CO_(2)in geological bodies.In this work,an integrated framework is proposed for synergistic geothermal energy storage and CO_(2)sequestration and utilization.Within this framework,CO_(2)is first injected into geothermal layers for energy accumulation.The resultant high-energy CO_(2)is then introduced into a target oil reservoir for CO_(2)utilization and geothermal energy storage.As a result,CO_(2)is sequestrated in the geological oil reservoir body.The results show that,as high-energy CO_(2)is injected,the average temperature of the whole target reservoir is greatly increased.With the assistance of geothermal energy,the geological utilization efficiency of CO_(2)is higher,resulting in a 10.1%increase in oil displacement efficiency.According to a storage-potential assessment of the simulated CO_(2)site,110 years after the CO_(2)injection,the utilization efficiency of the geological body will be as high as 91.2%,and the final injection quantity of the CO_(2)in the site will be as high as 9.529×10^(8)t.After 1000 years sequestration,the supercritical phase dominates in CO_(2)sequestration,followed by the liquid phase and then the mineralized phase.In addition,CO_(2)sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil.More importantly,CO_(2)exhibits excellent performance in storing geothermal energy on a large scale;for example,the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5×10^(7) normal households.Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality.展开更多
The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses...The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.展开更多
The hybrid policy is a flexible policy tool that combines features of carbon trading and carbon taxation.Its economic and environmental effects under China's background are still not studied in detail.Given the ex...The hybrid policy is a flexible policy tool that combines features of carbon trading and carbon taxation.Its economic and environmental effects under China's background are still not studied in detail.Given the exogenous carbon reduction targets,carbon prices,and carbon tax-rates,by computable general equilibrium modeling methods and factor decomposition methods,this article investigates direct and cascaded effects of the hybrid policy on economic growth,energy utilization,and carbon emission on the national level and the sector level,with China's national input-output data-set.Stepwisely,policy scenarios with irrational estimated results are selectively excluded based on comprehensive evaluation among economic,carbon reduction and other policy targets.As a result,against national economic conditions in 2007,the hybrid policy,with a carbon reduction target of -10%,a carbon tax-rate of around $10,and a ceiling carbon price of $40,is highly recommended,because of its significant lower economic loss,lower energy utilization cost,and practical robustness against fluctuation of energy market and carbon market.Furthermore,by decomposition analysis,carbon reduction-related costs are decomposed into a direct part that includes carbon allowance price and carbon tax,and an indirect part as the energy price incremental induced by direct carbon costs.Gross carbon reduction may be decomposed into three parts such as energy intensity,economic scale,and technical progress.And,carbon taxation is the main policy tool that stimulates to improve the energy efficiency.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal,low pollution and low c...The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal,low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning,which is a highly efficient,clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.展开更多
Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two...Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.展开更多
Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to...Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and展开更多
Based on the data of 8 solar radiation stations and 119 meteorological stations in Inner Mongolia from 1961 to 2017 as well as the comparative observation of rooftop solar distributed photovoltaic power generation equ...Based on the data of 8 solar radiation stations and 119 meteorological stations in Inner Mongolia from 1961 to 2017 as well as the comparative observation of rooftop solar distributed photovoltaic power generation equipment,the impact of climatic and environmental factors on the development and utilization of rooftop solar energy resources was studied.The results show that the main climatic factors affecting rooftop solar power generation were cloud cover,precipitation,relative humidity,visibility,gale,dust weather,temperature and lightning disaster.Except for temperature and lightning disaster,other meteorological elements were negatively correlated with rooftop solar power generation,namely reducing direct radiation.The high temperature in Inner Mongolia in summer could cause the solar cell efficiency to decrease by 40%-60%,while the low temperature in eastern region in winter was not suitable for the development of rooftop solar energy resources.Lightning is the main meteorological disaster affecting the safe operation of photovoltaic systems,and class-2 lightning protection equipment needs to be installed.Photovoltaic power generation equipment should be installed on a roof which is not covered by high buildings and on the windward side of a chimney as much as possible.Areas with heavy dust pollution need to remove dust on the surface of solar panels in time.Snow and ice should be removed timely during snowfall in winter.展开更多
Energy utilization is high-value use pattern of agricultural waste, and is main development direction of agricultural biomass energy industry in China. Planting and breeding industry in Hubei Province occupies importa...Energy utilization is high-value use pattern of agricultural waste, and is main development direction of agricultural biomass energy industry in China. Planting and breeding industry in Hubei Province occupies important position in whole country. Agricultural waste resources are rich, and it has huge potential for developing agriculturel biomass energy. By statistical data during 2000 -2011, we analyzed current situation and problem for energy utilization of agricultural waste in Hubei Province, and put forward several countermeasures and suggestions, vigorously promoting energy utilization of agricultural waste.展开更多
Arbuscular mycorrhizae(AM)fungi affect nutrient uptake for host plants,while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst s...Arbuscular mycorrhizae(AM)fungi affect nutrient uptake for host plants,while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere.An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus(M+vs.M−)and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus(L+vs.L−),where the compartments are connected either by nylon mesh of 20μm or 0.45μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment(N+vs.N−).Plant biomass and nutrients were measured.The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization,spore,and hyphal density,which when in association with the host plant then affected the biomass,and accumulations of N(nitrogen)and P(phosphorus)in the individual plant as well as root,stem,and leaf respectively.AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues.A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment.The results indicate that the C.camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks.These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.展开更多
Two consecutive growth studies were conducted to investigate the age-dependent nutrient and energy deposition in male and female meat-type chickens (Ross 308) based on feather and feather-free body fraction data deter...Two consecutive growth studies were conducted to investigate the age-dependent nutrient and energy deposition in male and female meat-type chickens (Ross 308) based on feather and feather-free body fraction data determined according to the comparative slaughter technique. Birds were reared under standardized housing conditions (15 floor pens per gender, 5 birds per pen). Both the starter (day 1 to 22) and grower diets (day 22 to 36) were based on corn, wheat, soybean meal, soybean protein concentrate and crystalline feed amino acids. Diets were formulated to ensure an equal feed protein quality close to the ideal amino acid ratio by adjusting a constant mixture of the feed proteins. Individual body weight (BW) and feed intake per pen were recorded weekly. At the start (day 1) as well as on a weekly basis until the end of the 5th week, 15 birds per gender (each 3 pens of 5 birds) were selected and euthanized following 24 h feed deprivation. Subsequently, the feathers were manually removed and quantified. Crude nutrient analysed in representative samples of both feather and feather-free body fractions. The nutrient and energy deposition in the bodies of both genders were significantly increased with increasing age (p . Male birds deposited significantly higher body protein (p and female birds significantly more fat and energy in the whole body (p during the entire growth period. In contrast, no differences were found in protein contents of the BW gain between genders dependent on age (p > 0.05). However, the protein partitioning in the gain of both analyzed body fractions provided oppositional results. Accordingly, male birds yielded relatively more protein in the feather-free body fraction (p and females relatively more feather protein (p as related to the whole body protein gain.展开更多
Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 an...Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 and 2007. In the past few days, 14 departments jointlypublished the Development Program of Energy Conservation and Comprehensive Utilization 2005-2007,(Program for short). They are Standardization Administration of China, National Development andReform Commission, Ministry of Land and Resources, Ministry of Establishment, Ministry ofCommunications, Ministry of Information Industry, Ministry of Waster Resources, Ministry ofAgriculture, Ministry of Commerce, General Administration of Quality Supervision, Inspection andQuarantine of the PRC, State Environmental Protection Administration, State Forestry Bureau, StateOceanic Administration and China Meteorological Bureau.展开更多
I. Preface
Biomass includes the residues of agriculture, forest and stock breeding, as well as straw, algae and energy crops. In its broad meaning, biomass is a kind of organic matter produced by the photosynthesis of...I. Preface
Biomass includes the residues of agriculture, forest and stock breeding, as well as straw, algae and energy crops. In its broad meaning, biomass is a kind of organic matter produced by the photosynthesis of plants, which is not only renewable, but also contains plentiful energy.展开更多
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
文摘As a kind of natural energy from the earth’s interior,geothermal energy is characterized by large reserve,wide distribution,good stability,high utilization coefficient,and positive effects of energy-saving and emission-reduction.It is of great significance for promoting green and low-carbon energy transition,reducing greenhouse gas emission,and achieving global climate goals and sustainable economic development.Hence,it has been highly recognized and valued by lots of countries around the world,and has become one of the most important clean energy sources that countries are accelerating to develop and utilize.The potential of the global geothermal energy resource is estimated to be 1.25×1027 J,equivalent to 4.27×10^(16) t of standard coal,among which the geothermal resource between 0 km and 5 km is 1.45×10^(26) J,equivalent to 4.95×1015 t of standard coal(China Geological Survey,2018).
文摘Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
基金the Key Program for International S&T Cooperation Projects of China(2022YFE0130100)Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(Y2022GH12).
文摘Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.
基金financially supported by the National Natural Science Foundation of China, China (Nos. 52274252 and 51874047)the Special Fund for the Construction of Innovative Provinces in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.
基金supported by the National Key Research and Development Program of China under grant(2022YFE0206700)the financial support by the National Natural Science Foundation of China(52004320)the Science Foundation of China University of Petroleum,Beijing(2462021QNXZ012 and 2462021YJRC012)。
文摘Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage due to its superior thermal properties.Moreover,the use of CO_(2)plumes for geothermal energy storage mitigates the greenhouse effect by storing CO_(2)in geological bodies.In this work,an integrated framework is proposed for synergistic geothermal energy storage and CO_(2)sequestration and utilization.Within this framework,CO_(2)is first injected into geothermal layers for energy accumulation.The resultant high-energy CO_(2)is then introduced into a target oil reservoir for CO_(2)utilization and geothermal energy storage.As a result,CO_(2)is sequestrated in the geological oil reservoir body.The results show that,as high-energy CO_(2)is injected,the average temperature of the whole target reservoir is greatly increased.With the assistance of geothermal energy,the geological utilization efficiency of CO_(2)is higher,resulting in a 10.1%increase in oil displacement efficiency.According to a storage-potential assessment of the simulated CO_(2)site,110 years after the CO_(2)injection,the utilization efficiency of the geological body will be as high as 91.2%,and the final injection quantity of the CO_(2)in the site will be as high as 9.529×10^(8)t.After 1000 years sequestration,the supercritical phase dominates in CO_(2)sequestration,followed by the liquid phase and then the mineralized phase.In addition,CO_(2)sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil.More importantly,CO_(2)exhibits excellent performance in storing geothermal energy on a large scale;for example,the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5×10^(7) normal households.Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality.
基金This work was funded by a number of scientific research programs,including grants from the National Key Research and Development Program of China,titled‘Evaluation and Optimal Target Selection of Deep Geothermal Resources in the Igneous Province in South China’(Project No.2019YFC0604903)‘Analysis and Geothermal Reservoir Stimulation Methods of Deep High-temperature Geothermal Systems in East China’(Project No.2021YFA0716004)+2 种基金a grant from the Joint Fund Program of the National Natural Science Foundation of China and Sinopec,titled‘Deep Geological Processes and Resource Effects of Basins’(Project No.U20B6001)two grants from the Sinopec Science and Technology Research Program,titled'Single well evaluation of Well Fushenre 1 and study on the potential of deep geothermal resources in Hainan'(Project No.P23131)‘Siting and Target Evaluation of Deep Geothermal Resources in Key Areas of Southeastern China’(Project No.P20041-1).
文摘The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.
基金supported by the Fundamental Research Funds for the Central Universities[CDJSK10 00 68]NSFC Young Scientist Research Fund[0903080]
文摘The hybrid policy is a flexible policy tool that combines features of carbon trading and carbon taxation.Its economic and environmental effects under China's background are still not studied in detail.Given the exogenous carbon reduction targets,carbon prices,and carbon tax-rates,by computable general equilibrium modeling methods and factor decomposition methods,this article investigates direct and cascaded effects of the hybrid policy on economic growth,energy utilization,and carbon emission on the national level and the sector level,with China's national input-output data-set.Stepwisely,policy scenarios with irrational estimated results are selectively excluded based on comprehensive evaluation among economic,carbon reduction and other policy targets.As a result,against national economic conditions in 2007,the hybrid policy,with a carbon reduction target of -10%,a carbon tax-rate of around $10,and a ceiling carbon price of $40,is highly recommended,because of its significant lower economic loss,lower energy utilization cost,and practical robustness against fluctuation of energy market and carbon market.Furthermore,by decomposition analysis,carbon reduction-related costs are decomposed into a direct part that includes carbon allowance price and carbon tax,and an indirect part as the energy price incremental induced by direct carbon costs.Gross carbon reduction may be decomposed into three parts such as energy intensity,economic scale,and technical progress.And,carbon taxation is the main policy tool that stimulates to improve the energy efficiency.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
文摘The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal,low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning,which is a highly efficient,clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.
文摘Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.
文摘Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and
基金Supported by Scientific and Technological Innovation Guidance Project of Inner Mongolia Autonomous Region(KCBJ2018067)
文摘Based on the data of 8 solar radiation stations and 119 meteorological stations in Inner Mongolia from 1961 to 2017 as well as the comparative observation of rooftop solar distributed photovoltaic power generation equipment,the impact of climatic and environmental factors on the development and utilization of rooftop solar energy resources was studied.The results show that the main climatic factors affecting rooftop solar power generation were cloud cover,precipitation,relative humidity,visibility,gale,dust weather,temperature and lightning disaster.Except for temperature and lightning disaster,other meteorological elements were negatively correlated with rooftop solar power generation,namely reducing direct radiation.The high temperature in Inner Mongolia in summer could cause the solar cell efficiency to decrease by 40%-60%,while the low temperature in eastern region in winter was not suitable for the development of rooftop solar energy resources.Lightning is the main meteorological disaster affecting the safe operation of photovoltaic systems,and class-2 lightning protection equipment needs to be installed.Photovoltaic power generation equipment should be installed on a roof which is not covered by high buildings and on the windward side of a chimney as much as possible.Areas with heavy dust pollution need to remove dust on the surface of solar panels in time.Snow and ice should be removed timely during snowfall in winter.
基金Supported by Science and Technology Research Item of Hubei Provincial Department of Education,China(B20121208)
文摘Energy utilization is high-value use pattern of agricultural waste, and is main development direction of agricultural biomass energy industry in China. Planting and breeding industry in Hubei Province occupies important position in whole country. Agricultural waste resources are rich, and it has huge potential for developing agriculturel biomass energy. By statistical data during 2000 -2011, we analyzed current situation and problem for energy utilization of agricultural waste in Hubei Province, and put forward several countermeasures and suggestions, vigorously promoting energy utilization of agricultural waste.
基金This study was supported by the National Natural Science Foundation of China(NSFC:31660200,31660156,31360106,31700539)the First-class Disciplines Program on Ecology of Guizhou Province(GNYL[2017]007)+3 种基金the Guizhou High level(Hundred-level)Innovative Talents Project(Qian-ke-he platform talents[2020]6004)the Provincial Key Technologies R&D Program of Guizhou Province of China(NY[2014]3029,[2016]Zhi-cheng 2805)the Talent-platform Program of Guizhou Province([2017]5788,[2018]5781)the Doctor starts Fund Project of Guizhou University of Traditional Chinese Medicine([2020]15).
文摘Arbuscular mycorrhizae(AM)fungi affect nutrient uptake for host plants,while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere.An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus(M+vs.M−)and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus(L+vs.L−),where the compartments are connected either by nylon mesh of 20μm or 0.45μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment(N+vs.N−).Plant biomass and nutrients were measured.The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization,spore,and hyphal density,which when in association with the host plant then affected the biomass,and accumulations of N(nitrogen)and P(phosphorus)in the individual plant as well as root,stem,and leaf respectively.AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues.A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment.The results indicate that the C.camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks.These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.
文摘Two consecutive growth studies were conducted to investigate the age-dependent nutrient and energy deposition in male and female meat-type chickens (Ross 308) based on feather and feather-free body fraction data determined according to the comparative slaughter technique. Birds were reared under standardized housing conditions (15 floor pens per gender, 5 birds per pen). Both the starter (day 1 to 22) and grower diets (day 22 to 36) were based on corn, wheat, soybean meal, soybean protein concentrate and crystalline feed amino acids. Diets were formulated to ensure an equal feed protein quality close to the ideal amino acid ratio by adjusting a constant mixture of the feed proteins. Individual body weight (BW) and feed intake per pen were recorded weekly. At the start (day 1) as well as on a weekly basis until the end of the 5th week, 15 birds per gender (each 3 pens of 5 birds) were selected and euthanized following 24 h feed deprivation. Subsequently, the feathers were manually removed and quantified. Crude nutrient analysed in representative samples of both feather and feather-free body fractions. The nutrient and energy deposition in the bodies of both genders were significantly increased with increasing age (p . Male birds deposited significantly higher body protein (p and female birds significantly more fat and energy in the whole body (p during the entire growth period. In contrast, no differences were found in protein contents of the BW gain between genders dependent on age (p > 0.05). However, the protein partitioning in the gain of both analyzed body fractions provided oppositional results. Accordingly, male birds yielded relatively more protein in the feather-free body fraction (p and females relatively more feather protein (p as related to the whole body protein gain.
文摘Jointly published by 14 Department headed by Standardization Administraion ofChina(SAC) Subtitle: China will formulate and reformulate 926 standards for energy conservation andcomprehensive u-tilization during 2005 and 2007. In the past few days, 14 departments jointlypublished the Development Program of Energy Conservation and Comprehensive Utilization 2005-2007,(Program for short). They are Standardization Administration of China, National Development andReform Commission, Ministry of Land and Resources, Ministry of Establishment, Ministry ofCommunications, Ministry of Information Industry, Ministry of Waster Resources, Ministry ofAgriculture, Ministry of Commerce, General Administration of Quality Supervision, Inspection andQuarantine of the PRC, State Environmental Protection Administration, State Forestry Bureau, StateOceanic Administration and China Meteorological Bureau.
文摘I. Preface
Biomass includes the residues of agriculture, forest and stock breeding, as well as straw, algae and energy crops. In its broad meaning, biomass is a kind of organic matter produced by the photosynthesis of plants, which is not only renewable, but also contains plentiful energy.