Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron tar...Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron target during deposition. The influences of negative bias voltage and Si content on the hardness and microstructure of the coatings were investigated. The composite coatings prepared under optimized conditions were characterized to be nc-TiN/a-Si3N4 structure with grain sizes of TiN ranging from 8-15 nm and exhibited a high hardness of 40 GPa. The enhancement of the hardness is suggested to be caused by the nanograin-amorphous structure effects.展开更多
Plasma sputtering deposition techniques are good candidates for the fabrication of electrodes used for direct methanol fuel cells (DMFCs). A house-made plasma sputtering system was used to deposit platinum of 0.1 mg...Plasma sputtering deposition techniques are good candidates for the fabrication of electrodes used for direct methanol fuel cells (DMFCs). A house-made plasma sputtering system was used to deposit platinum of 0.1 mg/cm^2 onto un-catalyzed gas diffusion layers (GDLs) to form a Pt catalyzed cathode at different radio frequency (RF) powers and sputtering-gas pressures. The sputtered cathodes were assembled in custom-made membrane electrode assemblies (MEAs) with a commercial anode and tested for the electrical performance of the single cell. A custommade MEA with a sputtering prepared cathode was compared with that of a reference membrane electrode assembly made of commercial JM (Johnson Mattey) catalysts (Pt loading per electrode of 0.5 mg/cm^2) under passive methanol supply, ambient temperature and air-breathing conditions. The results showed that the cathode prepared at an input power of 110 W and sputtering-gas pressure of 5.3 Pa exhibited the best cell performance and highest Pt utilization efficiency, which was due to the miniaturization of the Pt particles and formation of the porous catalyst layer. Although the single cell performance of the commercial cathode was better than all the sputtering fabricated cathodes, the Pt utilization efficiency of all the sputtered cathodes was higher than that of the commercial cathode.展开更多
A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4...A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.展开更多
The crystallization of NiTi shape memory alloy sputter deposition film in the course of sputtering deposition and that after heat treated were studied. The relationship between the process factors, such as substrate t...The crystallization of NiTi shape memory alloy sputter deposition film in the course of sputtering deposition and that after heat treated were studied. The relationship between the process factors, such as substrate type, temperature, as well as the crystallization when heat treated after plating was investigated. The results show that a new phase precipitates during heat treatment after sputtering deposition and the degree of crystallization among different layers and the stress in grains are obviously different.展开更多
LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Ra...LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.展开更多
Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown t...Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown that the formation of cones during the sputtering in these alloys is due to masking of the matrix by glow sputtering second phase precipitates or oxide particles.At steady state,the density of cottes were found to be a function of the densities pre- cipitates or oxide particles in bulk alloy.In addition to the changes of local sputtering rate,the electrostatic effect may play a role on the formation fo cones.展开更多
A steady-state,direct-current high-pressure CH_(4)-H_(2) glow discharge in a cup-shaped cathode parallel to anode configuration is investigated by using their V–I characteristics and CCD images.The discharges display...A steady-state,direct-current high-pressure CH_(4)-H_(2) glow discharge in a cup-shaped cathode parallel to anode configuration is investigated by using their V–I characteristics and CCD images.The discharges display an abnormal glow feature,and an expansion of a negative glow is observed on the cathode sidewall with the increasing discharge current.There exists a dependence of voltage on gas pressure for different fixed currents.The voltage decreases with gas pressure initially,and then increases conversely,which is correlated with the glow states of the cathode sidewall.This study exhibits a self-adjusting characterization for plasmas in cathode fall,which is important for maintaining steady-state,abnormal glow discharge in a relatively high pressure range.展开更多
This work studies the influence of anisothermal iron sintering process on hollow cathode discharge characteristics. Two independent cathodes form an annular discharge. The pressed cylindrical iron powder sample, actin...This work studies the influence of anisothermal iron sintering process on hollow cathode discharge characteristics. Two independent cathodes form an annular discharge. The pressed cylindrical iron powder sample, acting as central cathode, was placed concentrically in the interior of an external cathode. The external cathode, machined from an AISI 310 steel bar, besides acting to confine the geometry of the plasma, can also acts as a source of alloying elements. The sample heating is a function of the ion bombardment energy and, so, of the discharge electrical parameters: current (or current density) and the effective potential applied to the cathode. Successive anisothermal sintering is performed in a same sample until the reproducibility of the electrical parameters being obtained. The heating experiments up to 1250 °C, in a gas mixture of 80% Ar + 20% H2, at pressure of 133 Pa, at flow of 2xlO"6 mV, with an inter-cathode radial space of 5.8 mm, were carried out. It was verified the metallurgical evolution of the iron sample sintering process influences the current-?0n (time switched-on of the pulse) characteristics of the discharge.展开更多
Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targe...Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targets were investigated by COMSOL Multiphysics software(The official network of COMSOL Multiphysics software.https://uk.comsol.com/).We will elucidate the difference between the two types of cathode target and determine the type of cathode target used in the final experiment.The system configuration We explore the plasma distribution in the radio frequency cavity,so the simulation process was divided into two steps:building RF cavity model and setting up plasma discharge parameters.The main part of the model included the radio frequency cavity substrate(divided into two tube parts and middle ellipsoid part),the cathode and the magnet.And the plasma discharge parameters are as follows:Ar gas was used with 1.5 Pa;magnetic field strength of iron core was set to 1000 Gs;the applied voltage of cathode was set to-160 V;and anode was set to 0 V.Conclusion For the long cathode target and the short cathode target,the main difference is the electric field distribution.Because the electric field lines are denser for the long cathode target,the electric field intensity is stronger,and then the initial energy obtained by electrons is higher.During the plasma discharge process,because of the high electron energy,the plasma density produced is more than the simulation of the short cathode target.And under the same simulation time,the residual energy of electrons is more for the long cathode target,which is the reason for the higher electron temperature.From the previous experimental experience,we know that the film quality formed by higher electron energy is better.The simulation in this work shows that the electron energy corresponding to the long cathode target is higher than that of the short cathode target,so we choose the long cathode target as the experimental target in the subsequent coating experiments.展开更多
Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X...Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X ray diffraction and atomic fore microscopic study, the results indicate that the transformation temperatures of the thin films increase and the "rock candy" martensitic relief is more easily obtained with promoting the sputtering Ar pressure, sputtering power, or crystallizing temperature. However, when sputtering Ar pressure, sputtering power, or crystallizing temperature are lower, a kind of "chrysanthemum" relief, which is related with Ti rich GP zones, is much easier to be observed. The reason is that during crystallization process, both of the inherent compressive stresses introduced under the condition of higher sputtering pressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti 2(NiCu) precipitates and the increase of the transformation temperatures. The addition of copper to substitute for 5% nickel in mole fraction can reduce the transformation hysteresis width to about 10 ~ 15?℃.展开更多
TiPdNi thin films were prepared by magnetron sputtering onto unheated glass and silicon substrate. Atomic force microscope, energy dispersive X ray microanalyzer, X ray diffractometer, differential scanning calorimete...TiPdNi thin films were prepared by magnetron sputtering onto unheated glass and silicon substrate. Atomic force microscope, energy dispersive X ray microanalyzer, X ray diffractometer, differential scanning calorimeter and optical microscope were used to characterize the films. It is found that the surface morphology of the films change during the sputtering process and a shift of about 3%Ti(mole fraction) content from the center to the edge of the substrate occurs. The freestanding as deposited films undergo crystallization followed by three kinds of cooling conditions. For all these heat treated films, B2→B19→B19′ two stage phase transformation takes place. Many Ti 2Ni and Ti 2Pd type of precipitates are detected in the films. The constraint films on silicon substrate are crystallized at high temperature. After crystallization, the films show a two way shape memory effect.展开更多
Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during ins...Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.展开更多
Spinel niMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn204 (...Spinel niMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn204 (LMO) was prepared to shorten the Li diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn204 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2Odgraphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 rnAh.g-1 at 50 C and an outstanding energy density at a high power density maintaining 379.4 Wh.kg-1 at 25,293 W.kg-L Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.展开更多
基金Funded by the Natural Science Foundation of China(No.10435060 andNo. 10675095)
文摘Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron target during deposition. The influences of negative bias voltage and Si content on the hardness and microstructure of the coatings were investigated. The composite coatings prepared under optimized conditions were characterized to be nc-TiN/a-Si3N4 structure with grain sizes of TiN ranging from 8-15 nm and exhibited a high hardness of 40 GPa. The enhancement of the hardness is suggested to be caused by the nanograin-amorphous structure effects.
基金supported by National Natural Science Foundation of China (No. 10975162)the Principal Foundation of Institute of Plasma PhysicsChinese Academy of Sciences (No. 095GZ1156Y)
文摘Plasma sputtering deposition techniques are good candidates for the fabrication of electrodes used for direct methanol fuel cells (DMFCs). A house-made plasma sputtering system was used to deposit platinum of 0.1 mg/cm^2 onto un-catalyzed gas diffusion layers (GDLs) to form a Pt catalyzed cathode at different radio frequency (RF) powers and sputtering-gas pressures. The sputtered cathodes were assembled in custom-made membrane electrode assemblies (MEAs) with a commercial anode and tested for the electrical performance of the single cell. A custommade MEA with a sputtering prepared cathode was compared with that of a reference membrane electrode assembly made of commercial JM (Johnson Mattey) catalysts (Pt loading per electrode of 0.5 mg/cm^2) under passive methanol supply, ambient temperature and air-breathing conditions. The results showed that the cathode prepared at an input power of 110 W and sputtering-gas pressure of 5.3 Pa exhibited the best cell performance and highest Pt utilization efficiency, which was due to the miniaturization of the Pt particles and formation of the porous catalyst layer. Although the single cell performance of the commercial cathode was better than all the sputtering fabricated cathodes, the Pt utilization efficiency of all the sputtered cathodes was higher than that of the commercial cathode.
文摘A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.
文摘The crystallization of NiTi shape memory alloy sputter deposition film in the course of sputtering deposition and that after heat treated were studied. The relationship between the process factors, such as substrate type, temperature, as well as the crystallization when heat treated after plating was investigated. The results show that a new phase precipitates during heat treatment after sputtering deposition and the degree of crystallization among different layers and the stress in grains are obviously different.
基金supported Science Foundation of China by the National Natural(No.20203006).
文摘LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.
文摘Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown that the formation of cones during the sputtering in these alloys is due to masking of the matrix by glow sputtering second phase precipitates or oxide particles.At steady state,the density of cottes were found to be a function of the densities pre- cipitates or oxide particles in bulk alloy.In addition to the changes of local sputtering rate,the electrostatic effect may play a role on the formation fo cones.
基金Supported by the National Natural Science Foundation of China under Grant No 11075158the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(No J1103207)。
文摘A steady-state,direct-current high-pressure CH_(4)-H_(2) glow discharge in a cup-shaped cathode parallel to anode configuration is investigated by using their V–I characteristics and CCD images.The discharges display an abnormal glow feature,and an expansion of a negative glow is observed on the cathode sidewall with the increasing discharge current.There exists a dependence of voltage on gas pressure for different fixed currents.The voltage decreases with gas pressure initially,and then increases conversely,which is correlated with the glow states of the cathode sidewall.This study exhibits a self-adjusting characterization for plasmas in cathode fall,which is important for maintaining steady-state,abnormal glow discharge in a relatively high pressure range.
文摘This work studies the influence of anisothermal iron sintering process on hollow cathode discharge characteristics. Two independent cathodes form an annular discharge. The pressed cylindrical iron powder sample, acting as central cathode, was placed concentrically in the interior of an external cathode. The external cathode, machined from an AISI 310 steel bar, besides acting to confine the geometry of the plasma, can also acts as a source of alloying elements. The sample heating is a function of the ion bombardment energy and, so, of the discharge electrical parameters: current (or current density) and the effective potential applied to the cathode. Successive anisothermal sintering is performed in a same sample until the reproducibility of the electrical parameters being obtained. The heating experiments up to 1250 °C, in a gas mixture of 80% Ar + 20% H2, at pressure of 133 Pa, at flow of 2xlO"6 mV, with an inter-cathode radial space of 5.8 mm, were carried out. It was verified the metallurgical evolution of the iron sample sintering process influences the current-?0n (time switched-on of the pulse) characteristics of the discharge.
基金provided by Institute of High Energy Physics(Grant No.Y85461GOU2)
文摘Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targets were investigated by COMSOL Multiphysics software(The official network of COMSOL Multiphysics software.https://uk.comsol.com/).We will elucidate the difference between the two types of cathode target and determine the type of cathode target used in the final experiment.The system configuration We explore the plasma distribution in the radio frequency cavity,so the simulation process was divided into two steps:building RF cavity model and setting up plasma discharge parameters.The main part of the model included the radio frequency cavity substrate(divided into two tube parts and middle ellipsoid part),the cathode and the magnet.And the plasma discharge parameters are as follows:Ar gas was used with 1.5 Pa;magnetic field strength of iron core was set to 1000 Gs;the applied voltage of cathode was set to-160 V;and anode was set to 0 V.Conclusion For the long cathode target and the short cathode target,the main difference is the electric field distribution.Because the electric field lines are denser for the long cathode target,the electric field intensity is stronger,and then the initial energy obtained by electrons is higher.During the plasma discharge process,because of the high electron energy,the plasma density produced is more than the simulation of the short cathode target.And under the same simulation time,the residual energy of electrons is more for the long cathode target,which is the reason for the higher electron temperature.From the previous experimental experience,we know that the film quality formed by higher electron energy is better.The simulation in this work shows that the electron energy corresponding to the long cathode target is higher than that of the short cathode target,so we choose the long cathode target as the experimental target in the subsequent coating experiments.
文摘Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for Ti 51 Ni 44Cu 5. By means of the resistance temperature measurement, X ray diffraction and atomic fore microscopic study, the results indicate that the transformation temperatures of the thin films increase and the "rock candy" martensitic relief is more easily obtained with promoting the sputtering Ar pressure, sputtering power, or crystallizing temperature. However, when sputtering Ar pressure, sputtering power, or crystallizing temperature are lower, a kind of "chrysanthemum" relief, which is related with Ti rich GP zones, is much easier to be observed. The reason is that during crystallization process, both of the inherent compressive stresses introduced under the condition of higher sputtering pressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti 2(NiCu) precipitates and the increase of the transformation temperatures. The addition of copper to substitute for 5% nickel in mole fraction can reduce the transformation hysteresis width to about 10 ~ 15?℃.
文摘TiPdNi thin films were prepared by magnetron sputtering onto unheated glass and silicon substrate. Atomic force microscope, energy dispersive X ray microanalyzer, X ray diffractometer, differential scanning calorimeter and optical microscope were used to characterize the films. It is found that the surface morphology of the films change during the sputtering process and a shift of about 3%Ti(mole fraction) content from the center to the edge of the substrate occurs. The freestanding as deposited films undergo crystallization followed by three kinds of cooling conditions. For all these heat treated films, B2→B19→B19′ two stage phase transformation takes place. Many Ti 2Ni and Ti 2Pd type of precipitates are detected in the films. The constraint films on silicon substrate are crystallized at high temperature. After crystallization, the films show a two way shape memory effect.
基金financially supported by the National Natural Science Foundation of China(Nos.52372188,51902090)Henan Key Research Project Plan for Higher Education Institutions(No.23A150038)+6 种基金2023 Introduction of Studying Abroad Talent Program“111”Project(No.D17007)Henan Provincial Key Scientific Research Project of Colleges and Universities(No23A150038)Key Scientific Research Project of Education Department of Henan Province(No.22A150042)the National Students’Platform for Innovation and Entrepreneurship Training Program(No.201910476010)the China Postdoctoral Science Foundation(No.2019 M652546)the Henan Province Postdoctoral StartUp Foundation(No.1901017)。
文摘Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.
文摘Spinel niMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn204 (LMO) was prepared to shorten the Li diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn204 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2Odgraphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 rnAh.g-1 at 50 C and an outstanding energy density at a high power density maintaining 379.4 Wh.kg-1 at 25,293 W.kg-L Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.