Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr...In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.展开更多
In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Hal...In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.展开更多
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl...Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).展开更多
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ...The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed...The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
In this paper, we use Physics-Informed Neural Networks (PINNs) to solve shape optimization problems. These problems are based on incompressible Navier-Stokes equations and phase-field equations. The phase-field functi...In this paper, we use Physics-Informed Neural Networks (PINNs) to solve shape optimization problems. These problems are based on incompressible Navier-Stokes equations and phase-field equations. The phase-field function is used to describe the state of the fluids, and the optimal shape optimization is obtained by using the shape sensitivity analysis based on the phase-field function. The sharp interface is also presented by a continuous function between zero and one with a large gradient. To avoid the numerical solutions falling into the trivial solution, the hard boundary condition is implemented for our PINNs’ training. Finally, numerical results are given to prove the feasibility and effectiveness of the proposed numerical method.展开更多
Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of...Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of the strengths of TCM in treating diseases is holistic regulation.The theory of“Yang transforming Qi,and Yin shaping”implies a strong holistic view.Chloasma,one of the common skin diseases,seriously affects the physical and mental health of patients due to its unclear etiology,difficult treatment and easy recurrence.The occurrence and development of chloasma are closely related to internal organs.This paper is based on the theory of internal meridian,“Yang transforming Qi,and Yin shaping”which attaches importance to the concept of“Yang Qi”,from a new understanding of the pathogenesis etiology of chloasma.Methods:The author believes that the incidence of the disease is the deficiency of Yang Qi,which can’t promote the movement of Qi and blood to nourish the face,resulting in tangible material condensation,so proposes that this disease needs to be promoted by Yang transforming Qi and warm to dissipate.Moxibustion belongs to the fire,and its warming effect can dissipate the tangible evil.Results:Combined with clinical practice and the theory of internal meridian,the author elaborated that moxibustion is one of the effective methods for treating chloasma,which provides a new way of thinking for the treatment of chloasma.Conclusion:“Yang Transforming Qi and Yin shaping”can be used to guide the treatment of chloasma.展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
Combining the methods of theoretical,numerical and experimental,this research focuses on the jet formation behavior and optimization of trunconical hypercumulation shaped charge structure.With the three-stage division...Combining the methods of theoretical,numerical and experimental,this research focuses on the jet formation behavior and optimization of trunconical hypercumulation shaped charge structure.With the three-stage division,formation theory of trunconical hypercumulation shaped charge jet is established based on micro element method.By dimensional analysis,main control parameters are identified and their effect on jet formation are analyzed.Through numerical modelling and orthogonal optimization method,influence of the factors and their levels over the indicators of jet tip velocity and jet length as well as order of the significance of each factor and level are obtained.Penetration experiments of trunconical hypercumulation shaped charge based on the orthogonal optimization reveals its advantage over traditional conical shaped charge structure,and finally determines the optimal influence factor level combination.The research and results would provide useful guide for the design and application of trunconical hypercumulation shaped charge structure.展开更多
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The ...By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.展开更多
A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling ...A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling occurs at the designated position and forms a convolution.In this paper,a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel,and their characteristics are discussed respectively.Furthermore,the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis.The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness.Meanwhile,the forming force required in the process is quite small.展开更多
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金supported by the fund from ShenyangMint Company Limited(No.20220056)Senior Talent Foundation of Jiangsu University(No.19JDG022)Taizhou City Double Innovation and Entrepreneurship Talent Program(No.Taizhou Human Resources Office[2022]No.22).
文摘In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.
文摘In this study, we investigated the natural growth of Haloxylon ammodendron forest in Moso Bay, southwest of Gurbantunggut Desert. Random sample analysis was used to analyze the spatial point pattern performance of Haloxylon ammodendron population. ArcGIS software was used to summarize and analyze the spatial point pattern response of Haloxylon ammodendron population. The results showed that: 1) There were significant differences in the performance of point pattern analysis among different random quadrants. The paired t-test for variance mean ratio showed that the P values were 0.048, 0.004 and 0.301 respectively, indicating that the influence of quadrat shape on the performance of point pattern analysis was significant under the condition of the same optimal quadrat area. 2) The comparative analysis of square shapes shows that circular square is the best, square and regular hexagonal square are the second, and there is no significant difference between square and regular hexagonal square. 3) The number of samples plays a decisive role in spatial point pattern analysis. Insufficient sample size will lead to unstable results. With the increase of the number of samples to more than 120, the V value and P value curves will eventually stabilize. That is, stable spatial point pattern analysis results are closely related to the increase of the number of samples in random sample square analysis.
文摘Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%).
基金supported by the National Natural Science Foundation of China (Grant Nos.52375172,52075093,and 51905089).
文摘The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
文摘In this paper, we use Physics-Informed Neural Networks (PINNs) to solve shape optimization problems. These problems are based on incompressible Navier-Stokes equations and phase-field equations. The phase-field function is used to describe the state of the fluids, and the optimal shape optimization is obtained by using the shape sensitivity analysis based on the phase-field function. The sharp interface is also presented by a continuous function between zero and one with a large gradient. To avoid the numerical solutions falling into the trivial solution, the hard boundary condition is implemented for our PINNs’ training. Finally, numerical results are given to prove the feasibility and effectiveness of the proposed numerical method.
基金Project of TCM&Combination of Traditional Chinese and Western Medicine of Tianjin Health(Commission:2021003,2021004).
文摘Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of the strengths of TCM in treating diseases is holistic regulation.The theory of“Yang transforming Qi,and Yin shaping”implies a strong holistic view.Chloasma,one of the common skin diseases,seriously affects the physical and mental health of patients due to its unclear etiology,difficult treatment and easy recurrence.The occurrence and development of chloasma are closely related to internal organs.This paper is based on the theory of internal meridian,“Yang transforming Qi,and Yin shaping”which attaches importance to the concept of“Yang Qi”,from a new understanding of the pathogenesis etiology of chloasma.Methods:The author believes that the incidence of the disease is the deficiency of Yang Qi,which can’t promote the movement of Qi and blood to nourish the face,resulting in tangible material condensation,so proposes that this disease needs to be promoted by Yang transforming Qi and warm to dissipate.Moxibustion belongs to the fire,and its warming effect can dissipate the tangible evil.Results:Combined with clinical practice and the theory of internal meridian,the author elaborated that moxibustion is one of the effective methods for treating chloasma,which provides a new way of thinking for the treatment of chloasma.Conclusion:“Yang Transforming Qi and Yin shaping”can be used to guide the treatment of chloasma.
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
基金support from the Beijing Municipal Natural Science Foundation(Grant No.1214022).
文摘Combining the methods of theoretical,numerical and experimental,this research focuses on the jet formation behavior and optimization of trunconical hypercumulation shaped charge structure.With the three-stage division,formation theory of trunconical hypercumulation shaped charge jet is established based on micro element method.By dimensional analysis,main control parameters are identified and their effect on jet formation are analyzed.Through numerical modelling and orthogonal optimization method,influence of the factors and their levels over the indicators of jet tip velocity and jet length as well as order of the significance of each factor and level are obtained.Penetration experiments of trunconical hypercumulation shaped charge based on the orthogonal optimization reveals its advantage over traditional conical shaped charge structure,and finally determines the optimal influence factor level combination.The research and results would provide useful guide for the design and application of trunconical hypercumulation shaped charge structure.
基金Project supported by the National Natural Sciences Foundation of China(No. 50335060).
文摘By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.
基金National Natural Science Foundation of China(Grant No.52175349)Aeronautical Science Foundation of China(Grant No.20200009057004)。
文摘A novel buckling-induced forming method is proposed to produce metal bellows.The tube billet is firstly treated by local heating and cooling,and the axial loading is applied on both ends of the tube,then the buckling occurs at the designated position and forms a convolution.In this paper,a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel,and their characteristics are discussed respectively.Furthermore,the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis.The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness.Meanwhile,the forming force required in the process is quite small.