5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content ...5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.展开更多
This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified...This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified as highly expansive soils, which are affected by both climatic conditions and loading patterns. The consideration of both traffic loading patterns and climatic effects on these soils has been taken into account. A penetration test of 2.5 mm has been used on both pure red soils and stabilized soils at 10% and 15% partial replacement of lime with SSA and showed an improvement in the CBR of stabilized red clay soils up to 11.6%. Again, the PI of stabilized soils at 15% partial replacement of lime reduced up to 11.2%. The results obtained on both CBR and PI of these red clay soils are within the recommended values for the effective subgrade required for laying both permanent and flexible pavements. As a result, a recommendation of making use of SSA to lower the quantities of lime and its costs used in the stabilization of highly expansive soils have been tested through this research. However, further research on a more percentage partial replacement of lime to improve the PI of these soils to below 10% while keeping the CBR levels within the road construction regulations is welcomed.展开更多
Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the ...Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the three phosphates can greatly improve the adsorption capacity of red soil for Cu and Zn, and the effect of different phosphates on Cu and Zn adsorption follows the order of Ca(H2PO4)2〉KH2PO4〉(NH4)H2PO4. The addition of phosphate has little effect on the mobility of Cu. Ca(H2PO4)2and (NH4)H2PO4 show a strong ability in immobilizing Zn while the immobilization ability of KH2PO4 is much weaker. All the three phosphates are helpful for modifying the partitioning of Cu and Zn from the non-residual phase to the residual phase; however, they could also enhance the contents of Cu and Zn associated with exchangeable and carbonates fractions.展开更多
[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil o...[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.展开更多
The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation w...The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation was employed to explore the contribution level of the indicators such as total population,urbanization level,proportion of primary industry and investment of social fixed assets on ecosystem service value,and the correlation analysis was also carried out.The results showed that the ecosystem service value in Xingguo County during 1996-2005 mainly was woodland,and the decrease of woodland area was the major reason for the sustained reduction of ecosystem service value.With the further increase of market demand and the incentives of local government,the garden area rapidly increased during 2001-2005,and the influence degree of garden towards the changes of ecosystem service value was only second to woodland,ranking No.2.Four socio-economic indicators had different correlation degree with ecosystem service value during the different research periods.Total population,urbanization level and proportion of primary industry had high correlation degree with ecosystem service value,whereas the influence degree of various socio-economic indicators on ecosystem service value was equal with each other day by day.Urbanization level,investment of social fixed assets and total population had significant negative correlation with ecosystem service value,while the proportion of primary industry had positive correlation with ecosystem service value.展开更多
[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contam...[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.展开更多
[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and ratio...[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and rational application of phos- phorus fertilizer and reduction of environmental pollution. [Methods] A field trial and simulated rainfall experiment were carried out. In the field experiment, five phospho- rus levels (0, 75, 150, 300 and 600 kg P2OJhm2) were set, the yield of sugarcane stems and leaves were measured, and their phosphorus content was determined to obtain aboveground P accumulation and P surplus in soil. After sugarcane harvest- ing, calcium magnesium phosphate and potassium dihydrogen phosphate were ap- plied to soil with different levels of phosphorus to conduct the simulated rainfall ex- periment based on monthly rainfall from May to September in Guangxi during 2000-2015. The leachate was collected to analyze the concentration and total amount of phosphorus to obtain the regression equations between available phos- phorus content in soil and the increase of phosphorus concentration in leachate. [Results] Sugarcane yield increased significantly when phosphorus application rate was 150 kg P:~OJhm2. When phosphorus application rate exceeded this value, the yield of sugarcane stems and aboveground part was also significantly higher than the treatment without phosphorus application, but the increase of yield was similar to the treatment with phosphorus application rate of 150 kg P2OJhm2. According to the relationship equation between phosphorus application rate and soil Olsen-P con- tent as well as the relationship equations between the increment of P concentration in leachate and soil Olsen-P content in the treatments with calcium magnesium phosphate and KH2PO4, the increment of P concentration in leachate was 0.02-0.04 mg/L when phosphorus application rate was 75 kg P2OJhm2; the increment of P concentration in leachate was 0.07-0.10 mg/L as phosphorus application rate was 600 kg P2OJhm2. [Conclusions] The reasonable application rate of phosphorus fer- tilizer for sugarcane is 150 kg P2Or/hm2. However, long-term continuous application of phosphorus fertilizer can promote the enhancement of available phosphorus con- tent in soil and increase the risk of phosphorus loss from sugarcane fields.展开更多
[Objective] Liquid special fertilizer for drip irrigation of sugarcane was de- veloped and the fertilizer patterns were explored in the production to provide techni- cal support for fertigation production of modern ag...[Objective] Liquid special fertilizer for drip irrigation of sugarcane was de- veloped and the fertilizer patterns were explored in the production to provide techni- cal support for fertigation production of modern agriculture. [Method] ROC22 was selected as experimental material, two formulas of liquid special fertilizer for sugar- cane developed by the cooperation between Guangxi Academy of Agricultural Sci- ences and New Orientation (Guangxi) Chemical Industry Co.,Ltd. were selected, namely, balanced 21-21-21 ~ TE of Xinfangxiang and hyperkalemic 13-6-39-TE of Xinfangxiang. Taking conventional fertilization as the control (CK), two modes of ap- plying base fertilizer at the earlier stage + fertigation in the tillering stage and ferti- gation in the whole growth period were set. [Result] The two modes of fertilization had not significant effects on the emergence of sugarcane, but applying base fertil- izer at the earlier stage + timely applying water soluble fertilizer in the tillering stage was conducive to the tillering of sugarcane. Harvest results showed that the effects of different treatments on plant height and yield were significant, in which the yield of sugarcane under the treatment of hyperkalemic water-soluble fertilizer increased by 13.04% compared with conventional treatment, and the income increased by 4 500 yuan/hm2, [Conclusion] Liquid special fertilizer for drip irrigation of sugarcane signifi- cantly promoted the growth of sugarcane, moreover, under the same condition, the effect of hyperkalemic water-soluble fertilizer was better.展开更多
[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoret...[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.展开更多
A long-term field experiment was established to determine the influence of mineral fertilizer and organic manure on soil fertility. A tract of red soil (Ferralic Cambisol) in Qiyang Red Soil Experimental Station (Q...A long-term field experiment was established to determine the influence of mineral fertilizer and organic manure on soil fertility. A tract of red soil (Ferralic Cambisol) in Qiyang Red Soil Experimental Station (Qiyang County, Hunan Province, China) was fertilized beginning in 1990 and N20 and CO2 were examined during the maize and wheat growth season of 2007-2008. The study involved five treatments: organic manure (NPKM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), and control (CK). Manured soils had higher crop biomass, organic C, and pH than soils receiving the various mineralized fertilizers indicating that long-term application of manures could efficiently prevent red soil acidification and increase crop productivity. The application of manures and fertilizers at a rate of 300 kg N ha-1 yr-1 obviously increased NzO and CO2 emissions from 0.58 kg N20-N ha-~ yr-~ and 10565 kg C ha-~ yr-~ in the CK treatment soil to 3.0l kg N20-N ha-~ yr-~ and 28 663 kg C ha-~ yr-I in the NPKM treatment. There were also obvious different effects on N20 and CO2 emissions between applying fertilizer and manure. More N20 and CO2 released during the 184-d maize growing season than the 125- d wheat growth season in the manure fertilized soils but not in mineral fertilizer treatments. N20 emission was significantly affected by soil moisture only during the wheat growing season, and CO2 emission was affected by soil temperature only in CK and NP treatment during the wheat and maize growing season. In sum, this study indicates the application of organic manure may be a preferred strategy for maintaining red emissions than treatments only with mineral fertilizer. soil productivity, but may result in greater N20 and CO2展开更多
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of south...The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.展开更多
A 15-year fertilization experiment with different applications of inorganic N,P and K fertilizers and farmyard manure (M)was conducted to study the yield and soil responses to long-term fertilization at Qiyang,Hunan P...A 15-year fertilization experiment with different applications of inorganic N,P and K fertilizers and farmyard manure (M)was conducted to study the yield and soil responses to long-term fertilization at Qiyang,Hunan Province,China. Average grain yields of wheat and corn(1 672 and 5 111 kg ha-1,respectively)for the treatment NPKM were significantly higher than those(405 and 310 kg ha-1)of the unfertilized control and single inorganic fertilizer treatments.Compared with the corresponding initial values of the experiment,all treatments showed a yield decline of 9 to 111 kg ha-1 year-1 in wheat and 35 to 260 kg ha-1 year-1 in corn,respectively,and a significant pH decline of 0.07 to 0.12 pH year?1,except for the treatments PK and NPKM.After long-term fertilization,the soil organic C,soil available P,exchangeable Ca2+ and Mg2+and available Cu2+and Zn2+contents were higher in the treatment NPKM than in the treatments applied with inorganic fertilizer only.Compared to the treatment NPK,the treatment NPKM,where manure partially replaced inorganic N,had a positive impact on arresting the decline of soil pH.This improved grain yields of wheat and corn, suggesting that application of NPK fertilizer in combination with farmyard manure is important to maintain soil fertility and buffering capacity in red soil.展开更多
Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and i...Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and its derived biochar(CMB)as a soil amendment on cadmium(Cd)availability and accumulation in low and high Cd-accumulating cultivars of Brassica chinensis L.grown in an acidic red soil.CM and CMB were applied to Cd-contaminated acidic red soil at the rates of 0,3.0and 6.0%(w/w).Application of CMB was significantly more effective than that of CM,as it reduced the availability of Cd in soil by 34.3–69.9%and its bioaccumulation in the low Cd accumulator,Aijiaoheiye 333,by 51.2 and 67.4%,respectively.The addition of CMB significantly increased the extractability and accumulation of trace metals(Zn,Mn,Fe,and Cu)by plants and improved plant biomass production.CMB application,combined with utilizing low Cd accumulating cultivars represents a new,sustainable strategy to alleviate the toxic effects on Cd and improve food safety.展开更多
Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of ...Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.展开更多
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d...A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.展开更多
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly aff...The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.展开更多
The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation...The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation. The results show that with increasing amount of the added La, the proportion of exchangeable La in soils increases and there is more exchangeable La in red soil than in paddy soil. When the concentration of La is more than 600 mg(.)kg(-1) the proportion of exchangeable La almost remains constant. When the concentration of La is less than 1200 mg(.)kg(-1) there is no significant effect on CEC in red soil. But when the concentration of La is more than 1200 mg(.)kg(-1,) it has significant effect on CEC in paddy soil. The application of La resulted in increasing exchangeable aluminum, Ca and Mg in soil solution, and decreasing exchangeable Ca and Mg retained in soils. But when the concentration of La is less than 150 mg(.)kg(-1), it has no significant influence on CEC, exchangeable Ca and Mg, and exchangeable acidity in red soil and paddy soil.展开更多
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studi...The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.展开更多
A field experiment was conducted to study the effects of Pb, Cd, Cu, Zn and As coexisting in red soilon growth of rice (Oryza sativa L.), mung bean (Vigna rabiata (Linn.) Wilczek), alfalfa (Medicago sativaL.), slash p...A field experiment was conducted to study the effects of Pb, Cd, Cu, Zn and As coexisting in red soilon growth of rice (Oryza sativa L.), mung bean (Vigna rabiata (Linn.) Wilczek), alfalfa (Medicago sativaL.), slash pine (Pinus elliottii Engelm.) and aspen (Populus L.). Results showed that rice, mung bean andalfalfa were significantly innuenced by combined pollution of the heavy metals. The contents of Pb, cd andAs in rice grains greatly exceeded the National Standards for Food Hygiene of China. Heavy metals at ahigh concentration seriously retarded growth of mung bean and alfalfa, but not so obviously with slash pineand aspen. The composite index is suggested for evaluating the relativity of combined pollution witll heavymetals in soil.展开更多
Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expan...Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).展开更多
文摘5 different forests of Pinus massoniana, Schima superba, Liquidambar formosana, P. massoniana × S. superba, P. massoniana × L. formosana as the research object were set up to study the Cr, Cu and Zn content of degraded red soil region in subtropics. The soil heavy metal pollution degree was evaluated by national environmental quality standard (II class). The results showed that three soil metals of P. massoniana × S. superba were the highest, and the soil metals enrichment ability was strong. The order of single factor pollution index of metal elements was Cu (1.38) > Cr (0.81) > Zn (0.42), and moderately pollution, pollution warning and no pollution, respectively. There was no significant correlation between three soil heavy metals and soil total carbon (TC), total nitrogen (TN) and total phosphorus (TP). These results suggested that the accumulation of heavy metal elements was not derived from the parent material of soil. There was a significant positive correlation between the three metal elements which indicated that the sources of the three elements were similar. The structural equation model showed that the direct and indirect effects among the influencing factors ultimately affected the activity of heavy metals by cascade effects.
文摘This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified as highly expansive soils, which are affected by both climatic conditions and loading patterns. The consideration of both traffic loading patterns and climatic effects on these soils has been taken into account. A penetration test of 2.5 mm has been used on both pure red soils and stabilized soils at 10% and 15% partial replacement of lime with SSA and showed an improvement in the CBR of stabilized red clay soils up to 11.6%. Again, the PI of stabilized soils at 15% partial replacement of lime reduced up to 11.2%. The results obtained on both CBR and PI of these red clay soils are within the recommended values for the effective subgrade required for laying both permanent and flexible pavements. As a result, a recommendation of making use of SSA to lower the quantities of lime and its costs used in the stabilization of highly expansive soils have been tested through this research. However, further research on a more percentage partial replacement of lime to improve the PI of these soils to below 10% while keeping the CBR levels within the road construction regulations is welcomed.
基金Project(41271294)supported by the National Natural Science Foundation of ChinaProject(NCET-09-330)supported by Program for New Century Excellent Talents in University,China
文摘Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the three phosphates can greatly improve the adsorption capacity of red soil for Cu and Zn, and the effect of different phosphates on Cu and Zn adsorption follows the order of Ca(H2PO4)2〉KH2PO4〉(NH4)H2PO4. The addition of phosphate has little effect on the mobility of Cu. Ca(H2PO4)2and (NH4)H2PO4 show a strong ability in immobilizing Zn while the immobilization ability of KH2PO4 is much weaker. All the three phosphates are helpful for modifying the partitioning of Cu and Zn from the non-residual phase to the residual phase; however, they could also enhance the contents of Cu and Zn associated with exchangeable and carbonates fractions.
文摘[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy.
基金Supported by Natural Science Foundation of Jiangxi Province"Research on Optimization Model of Land Use in Southern Hilly Region with Red Soil in Jiangxi Province based on Ecological Security Evaluation"(2008GQH0057)Educational Commission of Jiangxi Province"Research on Scenario Simulation of Land Use Security Pattern in Southern Hilly Region with Red Soil in Jiangxi Province" (GJJ09557)Innovative Experimental Projects of National University Students"Research on Land Use Ecological Security Assessment in Hilly Region with Red Soil based on GIS-Xingguo County in Jiangxi Province as an Example"(101042124)~~
文摘The contribution rate of ecosystem service value variation was used to analyze the effects of land use changes on the changes of ecosystem service value in Xingguo County during 1996-2005.Grey integrated correlation was employed to explore the contribution level of the indicators such as total population,urbanization level,proportion of primary industry and investment of social fixed assets on ecosystem service value,and the correlation analysis was also carried out.The results showed that the ecosystem service value in Xingguo County during 1996-2005 mainly was woodland,and the decrease of woodland area was the major reason for the sustained reduction of ecosystem service value.With the further increase of market demand and the incentives of local government,the garden area rapidly increased during 2001-2005,and the influence degree of garden towards the changes of ecosystem service value was only second to woodland,ranking No.2.Four socio-economic indicators had different correlation degree with ecosystem service value during the different research periods.Total population,urbanization level and proportion of primary industry had high correlation degree with ecosystem service value,whereas the influence degree of various socio-economic indicators on ecosystem service value was equal with each other day by day.Urbanization level,investment of social fixed assets and total population had significant negative correlation with ecosystem service value,while the proportion of primary industry had positive correlation with ecosystem service value.
基金Supported by the National Natural Science Foundation of China(50874046)the National High-tech Research and Develop Program of China(863 Program)(2010AA065203)the Science and Technology Project of Education Bureau of Hunan Province,China(08A032)~~
文摘[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.
文摘[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and rational application of phos- phorus fertilizer and reduction of environmental pollution. [Methods] A field trial and simulated rainfall experiment were carried out. In the field experiment, five phospho- rus levels (0, 75, 150, 300 and 600 kg P2OJhm2) were set, the yield of sugarcane stems and leaves were measured, and their phosphorus content was determined to obtain aboveground P accumulation and P surplus in soil. After sugarcane harvest- ing, calcium magnesium phosphate and potassium dihydrogen phosphate were ap- plied to soil with different levels of phosphorus to conduct the simulated rainfall ex- periment based on monthly rainfall from May to September in Guangxi during 2000-2015. The leachate was collected to analyze the concentration and total amount of phosphorus to obtain the regression equations between available phos- phorus content in soil and the increase of phosphorus concentration in leachate. [Results] Sugarcane yield increased significantly when phosphorus application rate was 150 kg P:~OJhm2. When phosphorus application rate exceeded this value, the yield of sugarcane stems and aboveground part was also significantly higher than the treatment without phosphorus application, but the increase of yield was similar to the treatment with phosphorus application rate of 150 kg P2OJhm2. According to the relationship equation between phosphorus application rate and soil Olsen-P con- tent as well as the relationship equations between the increment of P concentration in leachate and soil Olsen-P content in the treatments with calcium magnesium phosphate and KH2PO4, the increment of P concentration in leachate was 0.02-0.04 mg/L when phosphorus application rate was 75 kg P2OJhm2; the increment of P concentration in leachate was 0.07-0.10 mg/L as phosphorus application rate was 600 kg P2OJhm2. [Conclusions] The reasonable application rate of phosphorus fer- tilizer for sugarcane is 150 kg P2Or/hm2. However, long-term continuous application of phosphorus fertilizer can promote the enhancement of available phosphorus con- tent in soil and increase the risk of phosphorus loss from sugarcane fields.
基金Supported by the Special Fund of Modern Agricultural Technology System Construction(CARS-20-3-5)the Project of Youth Fund of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2014YQ33)the Special Scientific Research Project of Guangxi Academy of Agricultural Sciences-Key Project Fund(Gui Nong Ke 2013YZ12)~~
文摘[Objective] Liquid special fertilizer for drip irrigation of sugarcane was de- veloped and the fertilizer patterns were explored in the production to provide techni- cal support for fertigation production of modern agriculture. [Method] ROC22 was selected as experimental material, two formulas of liquid special fertilizer for sugar- cane developed by the cooperation between Guangxi Academy of Agricultural Sci- ences and New Orientation (Guangxi) Chemical Industry Co.,Ltd. were selected, namely, balanced 21-21-21 ~ TE of Xinfangxiang and hyperkalemic 13-6-39-TE of Xinfangxiang. Taking conventional fertilization as the control (CK), two modes of ap- plying base fertilizer at the earlier stage + fertigation in the tillering stage and ferti- gation in the whole growth period were set. [Result] The two modes of fertilization had not significant effects on the emergence of sugarcane, but applying base fertil- izer at the earlier stage + timely applying water soluble fertilizer in the tillering stage was conducive to the tillering of sugarcane. Harvest results showed that the effects of different treatments on plant height and yield were significant, in which the yield of sugarcane under the treatment of hyperkalemic water-soluble fertilizer increased by 13.04% compared with conventional treatment, and the income increased by 4 500 yuan/hm2, [Conclusion] Liquid special fertilizer for drip irrigation of sugarcane signifi- cantly promoted the growth of sugarcane, moreover, under the same condition, the effect of hyperkalemic water-soluble fertilizer was better.
基金Supported by the National Natural Science Foundation of China (41101285)the Research Fund for Young Teachers of Qiongzhou University,China (QYQN201124)~~
文摘[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.
基金supported by the National Basic Research Program of China (2005CB121101)
文摘A long-term field experiment was established to determine the influence of mineral fertilizer and organic manure on soil fertility. A tract of red soil (Ferralic Cambisol) in Qiyang Red Soil Experimental Station (Qiyang County, Hunan Province, China) was fertilized beginning in 1990 and N20 and CO2 were examined during the maize and wheat growth season of 2007-2008. The study involved five treatments: organic manure (NPKM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), and control (CK). Manured soils had higher crop biomass, organic C, and pH than soils receiving the various mineralized fertilizers indicating that long-term application of manures could efficiently prevent red soil acidification and increase crop productivity. The application of manures and fertilizers at a rate of 300 kg N ha-1 yr-1 obviously increased NzO and CO2 emissions from 0.58 kg N20-N ha-~ yr-~ and 10565 kg C ha-~ yr-~ in the CK treatment soil to 3.0l kg N20-N ha-~ yr-~ and 28 663 kg C ha-~ yr-I in the NPKM treatment. There were also obvious different effects on N20 and CO2 emissions between applying fertilizer and manure. More N20 and CO2 released during the 184-d maize growing season than the 125- d wheat growth season in the manure fertilized soils but not in mineral fertilizer treatments. N20 emission was significantly affected by soil moisture only during the wheat growing season, and CO2 emission was affected by soil temperature only in CK and NP treatment during the wheat and maize growing season. In sum, this study indicates the application of organic manure may be a preferred strategy for maintaining red emissions than treatments only with mineral fertilizer. soil productivity, but may result in greater N20 and CO2
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No.2002CB410807).
文摘The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.
基金Project supported by the National"Tenth Five Years Plan"Key Project on Science and Technology of China(No.2004BA508B11)the National"Eleventh Five Years Plan"Key Project on Science and Technology of China(No.2006BAD05B09)the National Natural Science Foundation of China(No.40871148)
文摘A 15-year fertilization experiment with different applications of inorganic N,P and K fertilizers and farmyard manure (M)was conducted to study the yield and soil responses to long-term fertilization at Qiyang,Hunan Province,China. Average grain yields of wheat and corn(1 672 and 5 111 kg ha-1,respectively)for the treatment NPKM were significantly higher than those(405 and 310 kg ha-1)of the unfertilized control and single inorganic fertilizer treatments.Compared with the corresponding initial values of the experiment,all treatments showed a yield decline of 9 to 111 kg ha-1 year-1 in wheat and 35 to 260 kg ha-1 year-1 in corn,respectively,and a significant pH decline of 0.07 to 0.12 pH year?1,except for the treatments PK and NPKM.After long-term fertilization,the soil organic C,soil available P,exchangeable Ca2+ and Mg2+and available Cu2+and Zn2+contents were higher in the treatment NPKM than in the treatments applied with inorganic fertilizer only.Compared to the treatment NPK,the treatment NPKM,where manure partially replaced inorganic N,had a positive impact on arresting the decline of soil pH.This improved grain yields of wheat and corn, suggesting that application of NPK fertilizer in combination with farmyard manure is important to maintain soil fertility and buffering capacity in red soil.
基金financially supported by Ministry of Science and Technology of China (2012AA100405)Zhejiang University Innovative Research Funds, China (2015FZA6008)
文摘Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and its derived biochar(CMB)as a soil amendment on cadmium(Cd)availability and accumulation in low and high Cd-accumulating cultivars of Brassica chinensis L.grown in an acidic red soil.CM and CMB were applied to Cd-contaminated acidic red soil at the rates of 0,3.0and 6.0%(w/w).Application of CMB was significantly more effective than that of CM,as it reduced the availability of Cd in soil by 34.3–69.9%and its bioaccumulation in the low Cd accumulator,Aijiaoheiye 333,by 51.2 and 67.4%,respectively.The addition of CMB significantly increased the extractability and accumulation of trace metals(Zn,Mn,Fe,and Cu)by plants and improved plant biomass production.CMB application,combined with utilizing low Cd accumulating cultivars represents a new,sustainable strategy to alleviate the toxic effects on Cd and improve food safety.
基金supported by the earmarked fund for China Agriculture Research System (2013–2017)the Chinese Outstanding Talents Program in Agricultural Sciences
文摘Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.
文摘A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb.
基金Project supported by the National Natural Science Foundation of China (No. 40025104).
文摘The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.
文摘The effects of exogenous La on the fertility parameters such as cation exchange capacity ( CEC), exchangeable basic cations, and exchangeable acidity in red soil and paddy soil were studied with soil column simulation. The results show that with increasing amount of the added La, the proportion of exchangeable La in soils increases and there is more exchangeable La in red soil than in paddy soil. When the concentration of La is more than 600 mg(.)kg(-1) the proportion of exchangeable La almost remains constant. When the concentration of La is less than 1200 mg(.)kg(-1) there is no significant effect on CEC in red soil. But when the concentration of La is more than 1200 mg(.)kg(-1,) it has significant effect on CEC in paddy soil. The application of La resulted in increasing exchangeable aluminum, Ca and Mg in soil solution, and decreasing exchangeable Ca and Mg retained in soils. But when the concentration of La is less than 150 mg(.)kg(-1), it has no significant influence on CEC, exchangeable Ca and Mg, and exchangeable acidity in red soil and paddy soil.
文摘The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.
文摘A field experiment was conducted to study the effects of Pb, Cd, Cu, Zn and As coexisting in red soilon growth of rice (Oryza sativa L.), mung bean (Vigna rabiata (Linn.) Wilczek), alfalfa (Medicago sativaL.), slash pine (Pinus elliottii Engelm.) and aspen (Populus L.). Results showed that rice, mung bean andalfalfa were significantly innuenced by combined pollution of the heavy metals. The contents of Pb, cd andAs in rice grains greatly exceeded the National Standards for Food Hygiene of China. Heavy metals at ahigh concentration seriously retarded growth of mung bean and alfalfa, but not so obviously with slash pineand aspen. The composite index is suggested for evaluating the relativity of combined pollution witll heavymetals in soil.
基金supported by the Special Fund for Agroscientific Research in the Public Interest (201203030 and 201003016)the National Basic Research Program of China (973 Program, 2011CB100501-S06)the National Natural Science Foundation of China (41301269)
文摘Soil organic carbon (SOC) is one of the main carbon reservoirs in the terrestrial ecosystem. It is important to study SOC dynamics and effects of organic carbon amendments in paddy fields because of their vest expansion in south China. A study was carried out to evaluate the relationship between the SOC content and organic carbon input under various organic amendments at a long-term fertilization experiment that was established on a red soil under a double rice cropping system in 1981. The treatments included non-fertilization (CK), nitrogen-phosphorus-potassium fertilization in early rice only (NPK), green manure (Astragalus sinicus L.) in early rice only (OM1), high rate of green manure in early rice only (OM2), combined green manure in early rice and farmyard manure in late rice (OM3), combined green manure in early rice, farmyard manure in late rice and rice straw mulching in winter (OM4), combined green manure in early rice and rice straw mulching in winter (OMS). Our data showed that the SOC content was the highest under OM3 and OM4, followed by OM1, OM2 and OM5, then NPK fertilization, and the lowest under non-fertilization. However, our analyses in SOC stock indicated a significant difference between OM3 (33.9 t ha^-1) and OM4 (31.8 t ha^-1), but no difference between NPK fertilization (27 t ha^-1) and nonfertilization (28.1 t ha^-1). There was a significant linear increase in SOC over time for all treatments, and the slop of linear equation was greater in organic manure treatments (0.276-0.344 g kg-1 yr^-1) than in chemical fertilizer (0.216 g kg^-1 yr^-1) and no fertilizer (0.127 g kg^-1 yr^-1).