In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong inte...Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB.展开更多
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c...VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga...In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.展开更多
In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fiel...In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fields are proved. By combining the average field model, the future application of panweighted networks and panweighted fields in ANN is discussed.展开更多
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ...Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).展开更多
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e...Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced.展开更多
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure...Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands.展开更多
With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord m...With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord music, a multi-style chord music generation(MSCMG) network is proposed based on the previous ANN for creation. A music-style extraction module and a style extractor are added by the network on the original basis;the music-style extraction module divides the entire music content into two parts, namely the music-style information Mstyleand the music content information Mcontent. The style extractor removes the music-style information entangled in the music content information. The similarity of music generated by different models is compared in this paper. It is also evaluated whether the model can learn music composition rules from the database. Through experiments, it is found that the model proposed in this paper can generate music works in the expected style. Compared with the long short term memory(LSTM) network, the MSCMG network has a certain improvement in the performance of music styles.展开更多
Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather sta...Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation.展开更多
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金This research is funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R 151)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB.
文摘VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.
文摘In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fields are proved. By combining the average field model, the future application of panweighted networks and panweighted fields in ANN is discussed.
文摘Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024).
基金This research was partly supported by the UK Engineering and Physical Sciences Research Council(EPSRC)Studentship and Asset International,who provided the HDPE materials used to build bespoke constructed wetlands.
文摘Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.
基金National Natural Science Foundation of China(Nos.51577044 and 52022026).
文摘Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands.
基金National Natural Science Foundation of China (No.61801106)。
文摘With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord music, a multi-style chord music generation(MSCMG) network is proposed based on the previous ANN for creation. A music-style extraction module and a style extractor are added by the network on the original basis;the music-style extraction module divides the entire music content into two parts, namely the music-style information Mstyleand the music content information Mcontent. The style extractor removes the music-style information entangled in the music content information. The similarity of music generated by different models is compared in this paper. It is also evaluated whether the model can learn music composition rules from the database. Through experiments, it is found that the model proposed in this paper can generate music works in the expected style. Compared with the long short term memory(LSTM) network, the MSCMG network has a certain improvement in the performance of music styles.
基金Under the auspices of the‘Beautiful China’Ecological Civilization Construction Science and Technology Project(No.XDA23100203)National Natural Science Foundation of China(No.42071289)Henan Postdoctoral Foundation(No.20180087)。
文摘Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation.