期刊文献+
共找到1,415篇文章
< 1 2 71 >
每页显示 20 50 100
A Novel Approach to Energy Optimization:Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN
1
作者 Muhammad Salman Qamar Ihsan ulHaq +3 位作者 Amil Daraz Atif MAlamri Salman A.AlQahtani Muhammad Fahad Munir 《Computers, Materials & Continua》 SCIE EI 2024年第5期2945-2970,共26页
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso... In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators. 展开更多
关键词 Wireless Sensor networks(WSNs) mobile sink(MS) rendezvous point(RP) machine learning Artificial Neural networks(anns)
下载PDF
基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法
2
作者 刘廷滨 黄滔 +3 位作者 欧嘉祥 李云霞 艾岩 任正熹 《工程力学》 EI CSCD 北大核心 2024年第S01期300-309,共10页
为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据... 为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据的基础上,采用机器学习方法可以有效地通过数据建立输入和输出特征之间的回归关系。该文利用ANN和XGB两种机器学习算法建立了一个统一的锈蚀钢筋混凝土高温粘结强度预测模型。基于612组高温锈蚀钢筋混凝土的试验研究数据,进行模型训练和测试。结果表明:ML模型的预测结果与实验结果十分吻合。此外,针对机器学习算法本身存在的黑盒子问题,使用SHAP方法来解决锈蚀钢筋混凝土高温粘结强度预测过程中的模型可解释性问题。同时,还将ML模型的计算结果与三种理论计算公式的结果进行了比较,结果表明:ML模型具有明显的优势。新构建的混合机器学习模型很有可能成为准确评估CRC结构经受高温后的损伤程度问题的新选择。 展开更多
关键词 人工神经网络(ann) 极端梯度提升树(XGB) 锈蚀钢筋混凝土 高温粘结强度 SHAP方法
下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:2
3
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 BP-ann RBF-ann
下载PDF
Design of ANN Based Non-Linear Network Using Interconnection of Parallel Processor
4
作者 Anjani Kumar Singha Swaleha Zubair +3 位作者 Areej Malibari Nitish Pathak Shabana Urooj Neelam Sharma 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3491-3508,共18页
Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong inte... Suspicious mass traffic constantly evolves,making network behaviour tracing and structure more complex.Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them.They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results.Artificial neural network(ANN)offers optimal solutions in classifying and clustering the various reels of data,and the results obtained purely depend on identifying a problem.In this research work,the design of optimized applications is presented in an organized manner.In addition,this research work examines theoretical approaches to achieving optimized results using ANN.It mainly focuses on designing rules.The optimizing design approach of neural networks analyzes the internal process of the neural networks.Practices in developing the network are based on the interconnections among the hidden nodes and their learning parameters.The methodology is proven best for nonlinear resource allocation problems with a suitable design and complex issues.The ANN proposed here considers more or less 46k nodes hidden inside 49 million connections employed on full-fledged parallel processors.The proposed ANN offered optimal results in real-world application problems,and the results were obtained using MATLAB. 展开更多
关键词 Artificial neural network(ann) MULTIPROCESSOR hidden node nonlinear optimization parallel processing
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
5
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ann classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
6
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(anns) evolutionary algorithm hybrid identification model
下载PDF
基于GA改进ANN算法的车载网控系统故障诊断
7
作者 杨慧荣 《山西电子技术》 2024年第1期16-18,共3页
车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程... 车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件。为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程;使ANN泛化方法具有的映射性能获得充分利用可以防止产生局部极小值情况,获得更高的分类精度;利用实例分析方式测试车载故障诊断过程的有效性。研究结果表明:采用GA改进ANN算法可以有效优化平均误差及数据正确率,有效降低迭代次数,表明可以通过GA改进ANN方法来提升神经网络运算性能。经过遗传算法优化处理的ANN在训练过程中可以获得比初始ANN更快时收敛速率。 展开更多
关键词 车载网控系统 故障诊断 遗传算法 ann 有效性 分类精度
下载PDF
喷射成形TiC_(p)/ZA35复合材料热挤压工艺的ANN优化和组织研究 被引量:1
8
作者 刘敬福 叶建军 +2 位作者 周祥春 庄伟彬 王一 《航空材料学报》 CAS CSCD 北大核心 2023年第2期59-65,共7页
采用人工神经网络(ANN)的方法,研究挤压比、挤压比压、挤压温度和挤压速率对喷射成形TiC_(p)/ZA35复合材料力学性能的影响,建立了TiC_(p)/ZA35复合材料热挤压的人工神经网络模型。模型的输入参数为挤压比、挤压比压、挤压温度和挤压速率... 采用人工神经网络(ANN)的方法,研究挤压比、挤压比压、挤压温度和挤压速率对喷射成形TiC_(p)/ZA35复合材料力学性能的影响,建立了TiC_(p)/ZA35复合材料热挤压的人工神经网络模型。模型的输入参数为挤压比、挤压比压、挤压温度和挤压速率,输出参数为复合材料的抗拉强度。该模型可以仿真TiC_(p)/ZA35复合材料在不同热挤压工艺参数下的力学性能,也可以优化热挤压工艺参数,模型结果与实验结果误差小于1.8%,拟合率为0.986。推荐热挤压工艺优化参数为:挤压比22,挤压比压415 MPa,挤压温度315℃,挤压速率8 mm·s^(-1),此工艺条件下复合材料的抗拉强度为486.7 MPa。热挤压间接对复合材料进行了时效处理,材料晶内析出晶须状和颗粒状的MnAl6强化相。弥散强化和位错强化作用使热挤压喷射沉积TiCp/ZA35复合材料较未挤压复合材料抗拉强度提高38.3%。 展开更多
关键词 喷射成形TiC_(p)/ZA35复合材料 热挤压 人工神经网络 优化 强化机制
下载PDF
基于ANN算法的海洋平台动力定位前馈-反馈控制方法 被引量:2
9
作者 杜君峰 李杰 +1 位作者 邬德宇 常安腾 《中国海洋平台》 2023年第3期22-29,共8页
鉴于动力定位控制策略中的前馈控制与反馈控制方法具有不同的优缺点,提出一种基于人工神经网络(Artificial Neural Network,ANN)算法的二阶差频波浪力前馈控制与浮体位置反馈控制相结合的动力定位前馈-反馈控制方法,通过低频波浪载荷的... 鉴于动力定位控制策略中的前馈控制与反馈控制方法具有不同的优缺点,提出一种基于人工神经网络(Artificial Neural Network,ANN)算法的二阶差频波浪力前馈控制与浮体位置反馈控制相结合的动力定位前馈-反馈控制方法,通过低频波浪载荷的超前预测提前做出反应,并对实时位置信息进行反馈控制以纠正前馈信息的误差及其累积效应,从而实现前馈、反馈两种控制模式的优势互补。对某半潜式平台动力定位模式进行数值仿真,验证所提出的前馈-反馈控制方法的可行性和有效性,与单一的前馈或反馈控制相比,平台动力定位的精度和稳定性得到显著提升。 展开更多
关键词 深水浮式平台 动力定位 波浪前馈控制 前馈-反馈控制 人工神经网络
下载PDF
基于RBF-ANN GA的水下空化水射流喷嘴结构优化
10
作者 杨兴林 彭潇宇 《船舶工程》 CSCD 北大核心 2023年第11期85-90,共6页
为使空化水射流的性能满足船舶水下清洁的需求,对喷嘴结构进行优化,提出一种基于径向基函数(RBF)、人工神经网络(ANN)和遗传算法(GA)的水下空化水射流喷嘴结构优化方法。通过数值模拟计算设计参数(如入口段长度、收缩段长度、圆柱段长... 为使空化水射流的性能满足船舶水下清洁的需求,对喷嘴结构进行优化,提出一种基于径向基函数(RBF)、人工神经网络(ANN)和遗传算法(GA)的水下空化水射流喷嘴结构优化方法。通过数值模拟计算设计参数(如入口段长度、收缩段长度、圆柱段长度、扩散段长度、入口半径、圆柱段半径、收缩角和扩散角等)与空化性能参数轴线最大蒸汽体积分数的关系,通过RBF-ANN对该关系进行预测,解决采用GA进行结构优化时个体适应度难以计算的问题。将该方法与传统的方法进行对比,结果表明,该方法能快速且稳定地计算个体的适应度,相比传统方法能更有效地提升喷嘴的空化性能。 展开更多
关键词 喷嘴 空化水射流 径向基函数 人工神经网络 遗传算法 蒸汽体积分数
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
11
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial Neural network (ann) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR Support Vector Machine (SVM) WIRELESS SENSOR
下载PDF
基于ANN的能量采集无线传感器网络中继选择策略 被引量:2
12
作者 区展华 李翠然 杨茜 《计算机工程》 CAS CSCD 北大核心 2023年第5期215-222,230,共9页
能量采集无线传感器网络(EH-WSN)中继节点的能量补给来源与选择算法是制约网络生命周期的关键因素。为提升EH-WSN可再生能源利用率与中继选择效率,引入配有太阳能电池板与电网供能的能量节点(EN),采用解码转发中继协议与改进的功率分割... 能量采集无线传感器网络(EH-WSN)中继节点的能量补给来源与选择算法是制约网络生命周期的关键因素。为提升EH-WSN可再生能源利用率与中继选择效率,引入配有太阳能电池板与电网供能的能量节点(EN),采用解码转发中继协议与改进的功率分割接收机传输模型,构建多中继EH-WSN协同通信模型。基于二维线性相控阵天线实现EN对中继节点的定向无线能量补给,根据EN能量的不同来源动态调整充能策略,提出最大化网络生命周期下的优化中继选择算法。建立基于人工神经网络(ANN)的中继选择模型,结合反向传播算法与交叉熵函数对模型结果进行修正。仿真结果表明:采用EH-WSN优化中继选择算法的网络生命周期相比于无线携能传输(SWIPT)的WSN增长62%,可再生能源利用率单天最高可达21%;基于ANN模型的中继选择结果准确率可达90%、选择效率提高92%,相比于具有遍历性的EH-WSN优化中继选择算法计算复杂度更低、实时性更高。 展开更多
关键词 能量采集无线传感器网络 功率分割 中继选择 太阳能采集 人工神经网络
下载PDF
THE LOGIC CONSERVATION OF COMPOSITIONS BETWEEN PANWEIGHTED NETWORKS AND PANWEIGHTED FIELDS AND THEIR APPLICATION IN ANN
13
作者 吴陈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第7期118-121,共4页
In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fiel... In this paper, several definitions of composing panweighted networks and panweighted fields are given, a group of theorems about the logic conservation of compositions between panweighted networks and panweighted fields are proved. By combining the average field model, the future application of panweighted networks and panweighted fields in ANN is discussed. 展开更多
关键词 pansystems methodology artificial neural network (ann) systems theory
下载PDF
Optimization of the Conceptual Model of Green-Ampt Using Artificial Neural Network Model (ANN) and WMS to Estimate Infiltration Rate of Soil (Case Study: Kakasharaf Watershed, Khorram Abad, Iran)
14
作者 Ali Haghizadeh Leila Soleimani Hossein Zeinivand 《Journal of Water Resource and Protection》 2014年第5期473-480,共8页
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ... Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024). 展开更多
关键词 INFILTRATION Green-Ampt Empirical MODEL WMS MODEL Artificial Neural network MODEL (ann)
下载PDF
Predicting pollutant removal in constructed wetlands using artificial neural networks(ANNs)
15
作者 Christopher Kiiza Shun-qi Pan +1 位作者 Bettina Bockelmann-Evans Akintunde Babatunde 《Water Science and Engineering》 EI CAS CSCD 2020年第1期14-23,共10页
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e... Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced. 展开更多
关键词 CONSTRUCTED WETLANDS Urban STORMWATER POLLUTANT removal Artificial neural networks(anns) Principal component analysis(PCA)
下载PDF
基于自适应ANN的孤岛微网群电压频率分布式协同控制 被引量:1
16
作者 王海云 唐涛南 +3 位作者 王卫 张雨璇 汤云帅 孙方霞 《电源学报》 CSCD 北大核心 2023年第4期105-114,共10页
针对孤岛微网群稳定运行难度大,电压和频率控制极为复杂的问题,提出了一种适用于含多逆变器分布式电源DGs(distributed generations)微网群MGC(microgrid cluster)的智能电压、频率协同控制方法。首先,该方法利用李雅普诺夫理论和基于... 针对孤岛微网群稳定运行难度大,电压和频率控制极为复杂的问题,提出了一种适用于含多逆变器分布式电源DGs(distributed generations)微网群MGC(microgrid cluster)的智能电压、频率协同控制方法。首先,该方法利用李雅普诺夫理论和基于逆变器DG的动态特性设计了基于模型化的控制器;然后,利用人工神经网络ANN(artificial neural network)来近似上述动态特性,从而得到不需要DG参数先验信息的智能控制器,此外,所提控制器不需要使用电压和电流PI控制器;最后,通过不同场景下的仿真分析,验证了所提控制器的有效性,还利用李雅普诺夫分析,证明了跟踪误差和神经网络权值最终一致有界,从而可实现较好的电压和频率动态调节。 展开更多
关键词 人工神经网络 协同控制 分布式电源 李雅普诺夫理论
下载PDF
Optimization of Process Parameters of Continuous Microwave Drying Raspberry Puree Based on RSM and ANN-GA 被引量:1
17
作者 Zheng Xian-zhe Gao Feng +2 位作者 Fu Ke-sen Lu Tian-lin Zhu Chong-hao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期69-84,共16页
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe... To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits. 展开更多
关键词 raspberry puree continuous microwave drying response surface method(RSM) artificial neural network(ann) genetic algorithm(GA)CLC number:TG376 Document code:A Article ID:1006-8104(2023)-01-0069-16
下载PDF
Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks
18
作者 郑树磊 聂秋月 +2 位作者 黄韬 侯春风 王晓钢 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期105-118,共14页
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure... Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands. 展开更多
关键词 atmospheric pressure plasma jet-array multi-field coupling and modulation artificial neural network(ann)
下载PDF
Multi-style Chord Music Generation Based on Artificial Neural Network
19
作者 郁进明 陈壮 海涵 《Journal of Donghua University(English Edition)》 CAS 2023年第4期428-437,共10页
With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord m... With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord music, a multi-style chord music generation(MSCMG) network is proposed based on the previous ANN for creation. A music-style extraction module and a style extractor are added by the network on the original basis;the music-style extraction module divides the entire music content into two parts, namely the music-style information Mstyleand the music content information Mcontent. The style extractor removes the music-style information entangled in the music content information. The similarity of music generated by different models is compared in this paper. It is also evaluated whether the model can learn music composition rules from the database. Through experiments, it is found that the model proposed in this paper can generate music works in the expected style. Compared with the long short term memory(LSTM) network, the MSCMG network has a certain improvement in the performance of music styles. 展开更多
关键词 algorithmic composition artificial neural network(ann) multi-style chord music generation network
下载PDF
Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China
20
作者 HE Tian LIU Fuyuan +1 位作者 WANG Ao FEI Zhanbo 《Chinese Geographical Science》 SCIE CSCD 2023年第4期751-763,共13页
Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather sta... Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation. 展开更多
关键词 air temperature land surface temperature(LST) artificial neural network(ann) remote sensing climate change Loess Plateau China
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部