With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
Peer-to-peer(P2P)overlay networks provide message transmission capabilities for blockchain systems.Improving data transmission efficiency in P2P networks can greatly enhance the performance of blockchain systems.Howev...Peer-to-peer(P2P)overlay networks provide message transmission capabilities for blockchain systems.Improving data transmission efficiency in P2P networks can greatly enhance the performance of blockchain systems.However,traditional blockchain P2P networks face a common challenge where there is often a mismatch between the upper-layer traffic requirements and the underlying physical network topology.This mismatch results in redundant data transmission and inefficient routing,severely constraining the scalability of blockchain systems.To address these pressing issues,we propose FPSblo,an efficient transmission method for blockchain networks.Our inspiration for FPSblo stems from the Farthest Point Sampling(FPS)algorithm,a well-established technique widely utilized in point cloud image processing.In this work,we analogize blockchain nodes to points in a point cloud image and select a representative set of nodes to prioritize message forwarding so that messages reach the network edge quickly and are evenly distributed.Moreover,we compare our model with the Kadcast transmission model,which is a classic improvement model for blockchain P2P transmission networks,the experimental findings show that the FPSblo model reduces 34.8%of transmission redundancy and reduces the overload rate by 37.6%.By conducting experimental analysis,the FPS-BT model enhances the transmission capabilities of the P2P network in blockchain.展开更多
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap...Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and...As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.展开更多
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas...With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.展开更多
The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secu...The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.展开更多
Recently,the Erebus attack has proved to be a security threat to the blockchain network layer,and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer.The cloud-bas...Recently,the Erebus attack has proved to be a security threat to the blockchain network layer,and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer.The cloud-based active defense and one-sidedness detection strategies are the hindrances in detecting Erebus attacks.This study designs a detection approach by establishing a ReliefF_WMRmR-based two-stage feature selection algorithm and a deep learning-based multimodal classification detection model for Erebus attacks and responding to security threats to the blockchain network layer.The goal is to improve the performance of Erebus attack detection methods,by combining the traffic behavior with the routing status based on multimodal deep feature learning.The traffic behavior and routing status were first defined and used to describe the attack characteristics at diverse stages of s leak monitoring,hidden traffic overlay,and transaction identity forgery.The goal is to clarify how an Erebus attack affects the routing transfer and traffic state on the blockchain network layer.Consequently,detecting objects is expected to become more relevant and sensitive.A two-stage feature selection algorithm was designed based on ReliefF and weighted maximum relevance minimum redundancy(ReliefF_WMRmR)to alleviate the overfitting of the training model caused by redundant information and noise in multiple source features of the routing status and traffic behavior.The ReliefF algorithm was introduced to select strong correlations and highly informative features of the labeled data.According to WMRmR,a feature selection framework was defined to eliminate weakly correlated features,eliminate redundant information,and reduce the detection overhead of the model.A multimodal deep learning model was constructed based on the multilayer perceptron(MLP)to settle the high false alarm rates incurred by multisource data.Using this model,isolated inputs and deep learning were conducted on the selected routing status and traffic behavior.Redundant intermodal information was removed because of the complementarity of the multimodal network,which was followed by feature fusion and output feature representation to boost classification detection precision.The experimental results demonstrate that the proposed method can detect features,such as traffic data,at key link nodes and route messages in a real blockchain network environment.Additionally,the model can detect Erebus attacks effectively.This study provides novelty to the existing Erebus attack detection by increasing the accuracy detection by 1.05%,the recall rate by 2.01%,and the F1-score by 2.43%.展开更多
In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in th...In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in the world market.In China,resource-based state-owned enterprises(SOEs)are tasked with the mission of safeguarding resource security,and their internationalization development ideas and strategic deployment are significantly and fundamentally different from those of other non-state-owned enterprises and large multinational corporations.This study provides ideas for the globalization policies of enterprises in developing countries.We consider J Group in western China as a case and discuss its productive investment and global production network development from 2010 to 2019.We found that J Group was‘Partly'globalized,and there are multiple core nodes with the characteristics of centralized and decentralized coexistence in the production network;in addition,the overall layout centre shifted to Southeast Asia and China;however,its global production was restricted by the enterprise's investment security considerations,support and restrictions of the home country,political security risk of the host country,and sanctions from the West.These findings provide insights for future research:under the wave of anti-globalization and'internal circulation as the main body',resource SOEs should consider the potential risk of investment,especially keeping the middle and downstream industrial chain in China as much as possible.展开更多
Cross-border investment is essential for western China’s globalization.Global value chain(GVC)forms cross-border investment networks between industries in western China and overseas cities.Focusing on GVC,this study ...Cross-border investment is essential for western China’s globalization.Global value chain(GVC)forms cross-border investment networks between industries in western China and overseas cities.Focusing on GVC,this study uses the social network analysis method,entropy method,multi-index comprehensive evaluation method,and quadratic assignment procedure analysis method to examine the characteristics and influencing factors of the urban networks of research and development(R&D),production,and sales formed as a result of the overseas investments of listed manufacturing companies in western China.Results showed that the three types of investment networks involved multiple industry types and multiple central cities with differentiated diversity and multicentrality.The R&D urban network’s leading sub-industries were the mechanical equipment and instruments,medicine and biological products,and metal and nonmetal industries.The destination cities were mostly those home to educational and scientific research centers.The production urban network’s leading sub-industries were the mechanical equipment,instrument,and food and beverage industries.The destination cities were mostly regional central cities in developing countries.The sales urban network’s leading sub-industries were the mechanical equipment and instrument,metal and nonmetal,and petrochemical and plastics industries.The destination cities were numerous and scattered.In addition,the R&D urban network easily formed specialized clusters,core nodes easily controlled the production urban network,and individual nodes did not easily control the sales urban network.Technological and economic system advantages greatly impacted the three network types.Considering the different influencing factors,this study suggests optimizing the institutional investment environment to narrow the institutional gap,adjusting and optimizing the investment layout to expand overseas markets,and increasing R&D funds to stimulate technological progress and overseas investments in western China.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
The anonymity of the darknet makes it attractive to secure communication lines from censorship.The analysis,monitoring,and categorization of Internet network traffic are essential for detecting darknet traffic that ca...The anonymity of the darknet makes it attractive to secure communication lines from censorship.The analysis,monitoring,and categorization of Internet network traffic are essential for detecting darknet traffic that can generate a comprehensive characterization of dangerous users and assist in tracing malicious activities and reducing cybercrime.Furthermore,classifying darknet traffic is essential for real-time applications such as the timely monitoring of malware before attacks occur.This paper presents a two-stage deep network chain for detecting and classifying darknet traffic.In the first stage,anonymized darknet traffic,including VPN and Tor traffic related to hidden services provided by darknets,is detected.In the second stage,traffic related to VPNs and Tor services is classified based on their respective applications.The methodology of this paper was verified on a benchmark dataset containing VPN and Tor traffic.It achieved an accuracy of 96.8%and 94.4%in the detection and classification stages,respectively.Optimization and parameter tuning were performed in both stages to achieve more accurate results,enabling practitioners to combat alleged malicious activities and further detect such activities after outbreaks.In the classification stage,it was observed that the misclassifications were due to the audio and video streaming commonly used in shared real-time protocols.However,in cases where it is desired to distinguish between such activities accurately,the presented deep chain classifier can accommodate additional classifiers.Furthermore,additional classifiers could be added to the chain to categorize specific activities of interest further.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
With the trade network analysis method and bilateral country-product level trade data of 2017-2020,this paper reveals the overall characteristics and intrinsic vulnerabilities of China’s global supply chains.Our rese...With the trade network analysis method and bilateral country-product level trade data of 2017-2020,this paper reveals the overall characteristics and intrinsic vulnerabilities of China’s global supply chains.Our research finds that first,most global supply-chain-vulnerable products are from technology-intensive sectors.For advanced economies,their supply chain vulnerabilities are primarily exposed to political and economic alliances.In comparison,developing economies are more dependent on regional communities.Second,China has a significant export advantage with over 80%of highly vulnerable intermediate inputs relying on imports of high-end electrical,mechanical and chemical products from advanced economies or their multinational companies.China also relies on developing economies for the import of some resource products.Third,during the trade frictions from 2018 to 2019 and the subsequent COVID-19 pandemic,there was a significant reduction in the supply chain vulnerabilities of China and the US for critical products compared with other products,which reflects a shift in the layout of critical product supply chains to ensure not just efficiency but security.China should address supply chain vulnerabilities by bolstering supply-side weaknesses,diversifying import sources,and promoting international coordination and cooperation.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
With the rapid development of the Internet of Things(IoT),there is an increasing need for interac-tion between different networks.In order to improve the level of interconnection,especially the interoper-ability of us...With the rapid development of the Internet of Things(IoT),there is an increasing need for interac-tion between different networks.In order to improve the level of interconnection,especially the interoper-ability of users/devices between different nodes is very important.In the IoT heterogeneous blockchain sce-nario,how to ensure the legitimacy of the chain and how to confirm the identity of cross-chain informa-tion users/devices become the key issues to be solved for blockchain interoperability.In this paper,we pro-pose a secure and trusted interoperability mechanism for IoT based on heterogeneous chains to improve the security of blockchain interoperability.In this mecha-nism,a primary sidechain architecture supporting au-thentication at both ends of the heterogeneous chain is designed.In addition,a distributed gateway archi-tecture is proposed for cross-chain authentication and protocol conversion.The security and performance analysis shows that our scheme is feasible and effec-tive in improving the security of cross-chain opera-tions in IoT.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
基金This present research work was supported by the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘Peer-to-peer(P2P)overlay networks provide message transmission capabilities for blockchain systems.Improving data transmission efficiency in P2P networks can greatly enhance the performance of blockchain systems.However,traditional blockchain P2P networks face a common challenge where there is often a mismatch between the upper-layer traffic requirements and the underlying physical network topology.This mismatch results in redundant data transmission and inefficient routing,severely constraining the scalability of blockchain systems.To address these pressing issues,we propose FPSblo,an efficient transmission method for blockchain networks.Our inspiration for FPSblo stems from the Farthest Point Sampling(FPS)algorithm,a well-established technique widely utilized in point cloud image processing.In this work,we analogize blockchain nodes to points in a point cloud image and select a representative set of nodes to prioritize message forwarding so that messages reach the network edge quickly and are evenly distributed.Moreover,we compare our model with the Kadcast transmission model,which is a classic improvement model for blockchain P2P transmission networks,the experimental findings show that the FPSblo model reduces 34.8%of transmission redundancy and reduces the overload rate by 37.6%.By conducting experimental analysis,the FPS-BT model enhances the transmission capabilities of the P2P network in blockchain.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62371082 and 62001076in part by the National Key R&D Program of China under Grant 2021YFB1714100in part by the Natural Science Foundation of Chongqing under Grant CSTB2023NSCQ-MSX0726 and cstc2020jcyjmsxmX0878.
文摘Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金supported by the National Natural Science Foundation of China under Grant 62272391in part by the Key Industry Innovation Chain of Shaanxi under Grant 2021ZDLGY05-08.
文摘As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.
文摘With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.
基金supported by National Key Research and Development Program of Chain(No.2021YFE0205300)National Natural Science Foundation of China(No.62171313).
文摘The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.
基金funded by Open Fund Project of Information Assurance Technology Key Laboratory(No.KJ-15-109)Zhengzhou Science and Technology Talents(131PLKRC644).
文摘Recently,the Erebus attack has proved to be a security threat to the blockchain network layer,and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer.The cloud-based active defense and one-sidedness detection strategies are the hindrances in detecting Erebus attacks.This study designs a detection approach by establishing a ReliefF_WMRmR-based two-stage feature selection algorithm and a deep learning-based multimodal classification detection model for Erebus attacks and responding to security threats to the blockchain network layer.The goal is to improve the performance of Erebus attack detection methods,by combining the traffic behavior with the routing status based on multimodal deep feature learning.The traffic behavior and routing status were first defined and used to describe the attack characteristics at diverse stages of s leak monitoring,hidden traffic overlay,and transaction identity forgery.The goal is to clarify how an Erebus attack affects the routing transfer and traffic state on the blockchain network layer.Consequently,detecting objects is expected to become more relevant and sensitive.A two-stage feature selection algorithm was designed based on ReliefF and weighted maximum relevance minimum redundancy(ReliefF_WMRmR)to alleviate the overfitting of the training model caused by redundant information and noise in multiple source features of the routing status and traffic behavior.The ReliefF algorithm was introduced to select strong correlations and highly informative features of the labeled data.According to WMRmR,a feature selection framework was defined to eliminate weakly correlated features,eliminate redundant information,and reduce the detection overhead of the model.A multimodal deep learning model was constructed based on the multilayer perceptron(MLP)to settle the high false alarm rates incurred by multisource data.Using this model,isolated inputs and deep learning were conducted on the selected routing status and traffic behavior.Redundant intermodal information was removed because of the complementarity of the multimodal network,which was followed by feature fusion and output feature representation to boost classification detection precision.The experimental results demonstrate that the proposed method can detect features,such as traffic data,at key link nodes and route messages in a real blockchain network environment.Additionally,the model can detect Erebus attacks effectively.This study provides novelty to the existing Erebus attack detection by increasing the accuracy detection by 1.05%,the recall rate by 2.01%,and the F1-score by 2.43%.
基金supported by National Natural Science Foundation of China(Grants No.41971198 and 42371198)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-it24).
文摘In the context of economic globalization,while multinational enterprises from developed countries occupy a high-end position in the global value chain,enterprises from developing countries are often marginalized in the world market.In China,resource-based state-owned enterprises(SOEs)are tasked with the mission of safeguarding resource security,and their internationalization development ideas and strategic deployment are significantly and fundamentally different from those of other non-state-owned enterprises and large multinational corporations.This study provides ideas for the globalization policies of enterprises in developing countries.We consider J Group in western China as a case and discuss its productive investment and global production network development from 2010 to 2019.We found that J Group was‘Partly'globalized,and there are multiple core nodes with the characteristics of centralized and decentralized coexistence in the production network;in addition,the overall layout centre shifted to Southeast Asia and China;however,its global production was restricted by the enterprise's investment security considerations,support and restrictions of the home country,political security risk of the host country,and sanctions from the West.These findings provide insights for future research:under the wave of anti-globalization and'internal circulation as the main body',resource SOEs should consider the potential risk of investment,especially keeping the middle and downstream industrial chain in China as much as possible.
基金Under the auspices of National Natural Science Foundation of China(No.41971198)。
文摘Cross-border investment is essential for western China’s globalization.Global value chain(GVC)forms cross-border investment networks between industries in western China and overseas cities.Focusing on GVC,this study uses the social network analysis method,entropy method,multi-index comprehensive evaluation method,and quadratic assignment procedure analysis method to examine the characteristics and influencing factors of the urban networks of research and development(R&D),production,and sales formed as a result of the overseas investments of listed manufacturing companies in western China.Results showed that the three types of investment networks involved multiple industry types and multiple central cities with differentiated diversity and multicentrality.The R&D urban network’s leading sub-industries were the mechanical equipment and instruments,medicine and biological products,and metal and nonmetal industries.The destination cities were mostly those home to educational and scientific research centers.The production urban network’s leading sub-industries were the mechanical equipment,instrument,and food and beverage industries.The destination cities were mostly regional central cities in developing countries.The sales urban network’s leading sub-industries were the mechanical equipment and instrument,metal and nonmetal,and petrochemical and plastics industries.The destination cities were numerous and scattered.In addition,the R&D urban network easily formed specialized clusters,core nodes easily controlled the production urban network,and individual nodes did not easily control the sales urban network.Technological and economic system advantages greatly impacted the three network types.Considering the different influencing factors,this study suggests optimizing the institutional investment environment to narrow the institutional gap,adjusting and optimizing the investment layout to expand overseas markets,and increasing R&D funds to stimulate technological progress and overseas investments in western China.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘The anonymity of the darknet makes it attractive to secure communication lines from censorship.The analysis,monitoring,and categorization of Internet network traffic are essential for detecting darknet traffic that can generate a comprehensive characterization of dangerous users and assist in tracing malicious activities and reducing cybercrime.Furthermore,classifying darknet traffic is essential for real-time applications such as the timely monitoring of malware before attacks occur.This paper presents a two-stage deep network chain for detecting and classifying darknet traffic.In the first stage,anonymized darknet traffic,including VPN and Tor traffic related to hidden services provided by darknets,is detected.In the second stage,traffic related to VPNs and Tor services is classified based on their respective applications.The methodology of this paper was verified on a benchmark dataset containing VPN and Tor traffic.It achieved an accuracy of 96.8%and 94.4%in the detection and classification stages,respectively.Optimization and parameter tuning were performed in both stages to achieve more accurate results,enabling practitioners to combat alleged malicious activities and further detect such activities after outbreaks.In the classification stage,it was observed that the misclassifications were due to the audio and video streaming commonly used in shared real-time protocols.However,in cases where it is desired to distinguish between such activities accurately,the presented deep chain classifier can accommodate additional classifiers.Furthermore,additional classifiers could be added to the chain to categorize specific activities of interest further.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
文摘With the trade network analysis method and bilateral country-product level trade data of 2017-2020,this paper reveals the overall characteristics and intrinsic vulnerabilities of China’s global supply chains.Our research finds that first,most global supply-chain-vulnerable products are from technology-intensive sectors.For advanced economies,their supply chain vulnerabilities are primarily exposed to political and economic alliances.In comparison,developing economies are more dependent on regional communities.Second,China has a significant export advantage with over 80%of highly vulnerable intermediate inputs relying on imports of high-end electrical,mechanical and chemical products from advanced economies or their multinational companies.China also relies on developing economies for the import of some resource products.Third,during the trade frictions from 2018 to 2019 and the subsequent COVID-19 pandemic,there was a significant reduction in the supply chain vulnerabilities of China and the US for critical products compared with other products,which reflects a shift in the layout of critical product supply chains to ensure not just efficiency but security.China should address supply chain vulnerabilities by bolstering supply-side weaknesses,diversifying import sources,and promoting international coordination and cooperation.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金The research work is supported by the Shandong Provincial Key Research and Development Program(2021CXGC010107).
文摘With the rapid development of the Internet of Things(IoT),there is an increasing need for interac-tion between different networks.In order to improve the level of interconnection,especially the interoper-ability of users/devices between different nodes is very important.In the IoT heterogeneous blockchain sce-nario,how to ensure the legitimacy of the chain and how to confirm the identity of cross-chain informa-tion users/devices become the key issues to be solved for blockchain interoperability.In this paper,we pro-pose a secure and trusted interoperability mechanism for IoT based on heterogeneous chains to improve the security of blockchain interoperability.In this mecha-nism,a primary sidechain architecture supporting au-thentication at both ends of the heterogeneous chain is designed.In addition,a distributed gateway archi-tecture is proposed for cross-chain authentication and protocol conversion.The security and performance analysis shows that our scheme is feasible and effec-tive in improving the security of cross-chain opera-tions in IoT.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.