期刊文献+
共找到514,915篇文章
< 1 2 250 >
每页显示 20 50 100
mTORC1在EB病毒LMP1促进DLBCL细胞母细胞化的机制研究
1
作者 高晶晶 朱雄鹏 +3 位作者 王明泉 林兴智 庄燕玲 林宏峻 《中国实验血液学杂志》 CSCD 北大核心 2024年第1期219-224,共6页
目的:研究通过mTORC1通路EB病毒LMP1诱导弥漫大B细胞淋巴瘤(DLBCL)细胞母细胞化的可能机制。方法:采用Western blot法分析EBV+及EBV-DLBCL细胞株LMP1蛋白、CD38的表达及p70S6K磷酸化情况。构建过表达LMP1稳转株及RNAi沉默LMP1基因,用RT-... 目的:研究通过mTORC1通路EB病毒LMP1诱导弥漫大B细胞淋巴瘤(DLBCL)细胞母细胞化的可能机制。方法:采用Western blot法分析EBV+及EBV-DLBCL细胞株LMP1蛋白、CD38的表达及p70S6K磷酸化情况。构建过表达LMP1稳转株及RNAi沉默LMP1基因,用RT-qPCR验证基因表达,并利用Western blot法检测各组细胞LMP1蛋白、CD38的表达量及较EBV-p70S6K磷酸化水平。结果:相较于EBV-DLBCL细胞,LMP1蛋白在EBV+DLBCL细胞上表达(P=0.0008),EBV+DLBCL细胞p70S6K磷酸化水平更高(P=0.0072)及CD38的表达量更高(P=0.0091)。与空载组对比,LMP1OE组的LMP1蛋白表达及CD38表达量均增高(P=0.0353;P<0.0001),且p70S6K磷酸化水平增高(P=0.0065);并验证了LMP1 mRNA表达(P<0.0001)。较si-NC组,LMP1KO组不表达LMP1蛋白(P=0.0129),且p70S6K磷酸化消失(P=0.0228);同时,CD38表达量减少,但无显著性差异(P=0.2377)。结论:LMP1通过活化mTORC1通路促进DLBCL细胞浆母细胞化。 展开更多
关键词 EB病毒 潜伏膜蛋1 mTORC1通路 CD38 弥漫大B细胞淋巴瘤 浆母细胞化
下载PDF
植酸-胞嘧啶对DL-蛋氨酸粉尘爆燃火焰抑制特性研究
2
作者 王昊 张英 +1 位作者 周林 赵齐 《爆破》 CSCD 北大核心 2024年第2期238-244,共7页
饲料及其添加剂粉尘具有较高的燃烧热,在生产过程中存在一定的爆燃风险,威胁生命财产安全,预混抑制剂是目前应用最为广泛的一种抑爆手段,但传统抑制剂不可食用,无法加入至饲料类粉尘实现抑爆。因此,以饲料主要添加剂DL-蛋氨酸(DLM)粉尘... 饲料及其添加剂粉尘具有较高的燃烧热,在生产过程中存在一定的爆燃风险,威胁生命财产安全,预混抑制剂是目前应用最为广泛的一种抑爆手段,但传统抑制剂不可食用,无法加入至饲料类粉尘实现抑爆。因此,以饲料主要添加剂DL-蛋氨酸(DLM)粉尘为研究对象,采用自主合成的营养价值高、绿色可食用生物质基植酸-胞嘧啶(PA-CY),研究了PA-CY对DLM粉尘爆燃火焰传播特性的影响,通过高速摄影和可视化竖直管道记录爆燃火焰传播过程并计算火焰速度,采用热电偶监测火焰温度变化。结果表明:随PA-CY质量分数的升高DLM爆燃火焰亮度持续下降,严重破坏了火焰结构,加入20%PA-CY后火焰峰值速度、平均速度和峰值温度由27.66 m/s、14.39 m/s、1014℃分别下降至13.83 m/s、6.88 m/s、540℃,下降比重达50.0%、52.2%和46.7%,且PA-CY质量分数达30%后粉尘无法被点燃,说明PA-CY抑制效果显著。此结果可为饲料类粉尘爆燃的防治提供理论支持。 展开更多
关键词 粉尘爆炸 dl-蛋氨酸 植酸-胞嘧啶 火焰传播 抑制特性
下载PDF
Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network 被引量:6
3
作者 Zicheng Xin Jiangshan Zhang +2 位作者 Yu Jin Jin Zheng Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期335-344,共10页
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon... The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry. 展开更多
关键词 ladle furnace element yield principal component analysis deep neural network statistical evaluation
下载PDF
面向肺炎CT图像识别的DL-CTNet模型
4
作者 王威 黄文迪 +1 位作者 王新 王珑润 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期122-132,共11页
肺炎常缺乏明显呼吸系症状,症状多不典型,易发生漏诊、错诊.利用深度学习技术辅助医务人员安全、高效地检测感染者是一种有效途径.针对COVID-19感染者CT图像的磨玻璃影、铺路石征、血管扩张等特点,提出一种可有效地提取CT图像中的局部... 肺炎常缺乏明显呼吸系症状,症状多不典型,易发生漏诊、错诊.利用深度学习技术辅助医务人员安全、高效地检测感染者是一种有效途径.针对COVID-19感染者CT图像的磨玻璃影、铺路石征、血管扩张等特点,提出一种可有效地提取CT图像中的局部与全局特征的轻量级模型——DL-CTNet.输入预处理的CT图像后,首先采用空洞卷积和动态双路径多尺度特征融合(D-DMFF)模块的2个支路提取浅层特征;然后使用局部与全局特征拼接模块(LGFC)中的D-DMFF模块提取局部特征、Swin Transformer提取全局特征,并通过拼接获得深层特征;最后经过全连接层输出分类标签.实验结果表明,在2个CT图像数据集上,验证了LGFC模块以及DL-CTNet的低复杂度与有效性;DL-CTNet的分类准确率高达98.613%,与其他方法相比,其能更准确地识别肺炎的CT图像. 展开更多
关键词 肺炎 胸部CT图像 卷积神经网络 TRANSFORMER
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
5
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:3
6
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:3
7
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Image super‐resolution via dynamic network 被引量:1
8
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
9
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
10
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
Research on the Construction of Computer Network Security System in Middle School Campus Network 被引量:1
11
作者 Haijing Xing 《Journal of Electronic Research and Application》 2023年第3期27-32,共6页
In order to improve the security of high school campus networks,this paper introduces the goal,system composition,and function of the network security of high school campus networks,and puts forward a series of strate... In order to improve the security of high school campus networks,this paper introduces the goal,system composition,and function of the network security of high school campus networks,and puts forward a series of strategies,including the establishment of network security protection system,data backup and recovery mechanism,and strengthening network security management and training.Through these strategies,the safety and stable operation of the campus network can be ensured,the quality of education can be improved,and school’s development can be promoted. 展开更多
关键词 network security Physical security Software security
下载PDF
The optimal atropine concentration for myopia control in Chinese children: a systematic review and network Metaanalysis 被引量:1
12
作者 Xiao-Yan Wang Hong-Wei Deng +7 位作者 Jian Yang Xue-Mei Zhu Feng-Ling Xiang Jing Tu Ming-Xue Huang Yun Wang Jin-Hua Gan Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1128-1137,共10页
AIM:To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia... AIM:To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia.METHODS:A systematic search was conducted across the Cochrane Library,PubMed,Web of Science,EMBASE,CNKI,CBM,VIP,and Wanfang database,encompassing literature on slowing progression of myopia with varying atropine concentrations from database inception to January 17,2024.Data extraction and quality assessment were performed,and a network Meta-analysis was executed using Stata version 14.0 Software.Results were visually represented through graphs.RESULTS:Fourteen papers comprising 2475 cases were included;five different concentrations of atropine solution were used.The network Meta-analysis,along with the surface under the cumulative ranking curve(SUCRA),showed that 1%atropine(100%)>0.05%atropine(74.9%)>0.025%atropine(51.6%)>0.02%atropine(47.9%)>0.01%atropine(25.6%)>control in refraction change and 1%atropine(98.7%)>0.05%atropine(70.4%)>0.02%atropine(61.4%)>0.025%atropine(42%)>0.01%atropine(27.4%)>control in axial length(AL)change.CONCLUSION:In Chinese children and teenagers,the five various concentrations of atropine can reduce the progression of myopia.Although the network Meta-analysis showed that 1%atropine is the best one for controlling refraction and AL change,there is a high incidence of adverse effects with the use of 1%atropine.Therefore,we suggest that 0.05%atropine is optimal for Chinese children to slow myopia progression. 展开更多
关键词 ATROPINE China children and adolescents MYOPIA network Meta-analysis
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
13
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
Biodiversity metrics on ecological networks: Demonstrated with animal gastrointestinal microbiomes 被引量:1
14
作者 Zhanshan(Sam)Ma Lianwei Li 《Zoological Research(Diversity and Conservation)》 2024年第1期51-65,共15页
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity... Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients. 展开更多
关键词 Biodiversity on network Hill numbers Animal gut microbiome network link diversity network species diversity network abundance-weighted link diversity
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
15
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Multi-Scale-Matching neural networks for thin plate bending problem 被引量:1
16
作者 Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期11-15,共5页
Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To r... Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation problems.Inspired by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,respectively.Moreover,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region problems.Numerical results for the thin plate problem validate the proposed method. 展开更多
关键词 Singular perturbation Physics-informed neural networks Boundary layer Machine learning
下载PDF
Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks:Climatology,Interannual Variability,and Extremes 被引量:2
17
作者 Ya WANG Gang HUANG +6 位作者 Baoxiang PAN Pengfei LIN Niklas BOERS Weichen TAO Yutong CHEN BO LIU Haijie LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1299-1312,共14页
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth... Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes. 展开更多
关键词 generative adversarial networks model bias deep learning El Niño-Southern Oscillation marine heatwaves
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
18
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
基于EasyDL平台的甘肃陇南核桃主要病害诊断模型的构建及应用
19
作者 满自红 王志成 +4 位作者 陈耀年 王让军 王一峰 王明霞 尚素琴 《西北农业学报》 CAS CSCD 北大核心 2024年第5期971-980,共10页
旨在解决甘肃陇南地区核桃产业中病虫害准确鉴定的问题,以提高种植户核桃园管理的水平和能力。基于自动化深度学习技术(Automated deep learning technology,AutoDL),利用机器学习模型搜索(Model Search)实现自动化人工智能(Automated a... 旨在解决甘肃陇南地区核桃产业中病虫害准确鉴定的问题,以提高种植户核桃园管理的水平和能力。基于自动化深度学习技术(Automated deep learning technology,AutoDL),利用机器学习模型搜索(Model Search)实现自动化人工智能(Automated artificial intelligence,AutoML)算法框架,基于飞桨开源深度学习平台Easy DL构建甘肃陇南核桃主要病害的诊断模型,并进行诊断精度的模型训练。结果显示,共246张训练集进入模型,鉴定为9种常见核桃病害,模型部署在API公用云上,通过微信小程序或浏览器运行。经训练,其诊断准确率达95%以上。说明通过EasyDL构建的陇南地区核桃上常见病害模型运行可靠,能够为核桃种植户提供准确的病害诊断,从而很好地指导种植户提高管理核桃园的水平和应付突发植保问题的能力,以便及时、迅速采取综合防治措施,最大程度地减少因病害造成的经济损失。同时也是相关从业人员和基层研究人员解决核桃植保问题的得力辅助工具。 展开更多
关键词 Easydl 病害诊断 深度学习技术 综合防治 甘肃
下载PDF
Build neural network models to identify and correct news headlines exaggerating obesity-related scientific findings
20
作者 Ruopeng An Quinlan Batcheller +1 位作者 Junjie Wang Yuyi Yang 《Journal of Data and Information Science》 CSCD 2023年第3期88-97,共10页
Purpose:Media exaggerations of health research may confuse readers’understanding,erode public trust in science and medicine,and cause disease mismanagement.This study built artificial intelligence(AI)models to automa... Purpose:Media exaggerations of health research may confuse readers’understanding,erode public trust in science and medicine,and cause disease mismanagement.This study built artificial intelligence(AI)models to automatically identify and correct news headlines exaggerating obesity-related research findings.Design/methodology/approach:We searched popular digital media outlets to collect 523 headlines exaggerating obesity-related research findings.The reasons for exaggerations include:inferring causality from observational studies,inferring human outcomes from animal research,inferring distant/end outcomes(e.g.,obesity)from immediate/intermediate outcomes(e.g.,calorie intake),and generalizing findings to the population from a subgroup or convenience sample.Each headline was paired with the title and abstract of the peer-reviewed journal publication covered by the news article.We drafted an exaggeration-free counterpart for each original headline and fined-tuned a BERT model to differentiate between them.We further fine-tuned three generative language models-BART,PEGASUS,and T5 to autogenerate exaggeration-free headlines based on a journal publication’s title and abstract.Model performance was evaluated using the ROUGE metrics by comparing model-generated headlines with journal publication titles.Findings:The fine-tuned BERT model achieved 92.5%accuracy in differentiating between exaggeration-free and original headlines.Baseline ROUGE scores averaged 0.311 for ROUGE-1,0.113 for ROUGE-2,0.253 for ROUGE-L,and 0.253 ROUGE-Lsum.PEGASUS,T5,and BART all outperformed the baseline.The best-performing BART model attained 0.447 for ROUGE-1,0.221 for ROUGE-2,0.402 for ROUGE-L,and 0.402 for ROUGE-Lsum.Originality/value:This study demonstrated the feasibility of leveraging AI to automatically identify and correct news headlines exaggerating obesity-related research findings. 展开更多
关键词 Artificial intelligence Deep neural networks NEWS Headlines EXAGGERATION OBESITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部