期刊文献+
共找到8,224篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible,thermal processable,self-healing,and fully bio-based starch plastics by constructing dynamic imine network
1
作者 Xiaoqian Zhang Haishan Zhang +2 位作者 Guowen Zhou Zhiping Su Xiaohui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1610-1618,共9页
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ... The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics. 展开更多
关键词 Bioplastic Covalent adaptable networks Schiff base chemistry Thermal processability SELF-HEALING
下载PDF
MACDCGAN的发电机轴承故障诊断方法
2
作者 曹洁 尹浩楠 王进花 《振动与冲击》 EI CSCD 北大核心 2024年第11期227-235,共9页
在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成... 在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成对抗网络(MACDCGAN)的故障诊断方法。通过对采集的一维时序信号进行小波变换增强特征,构建简化结构参数的条件深度卷积生成对抗网络模型生成样本,并在模型中采用Wasserstein距离优化损失函数解决训练过程中存在模式崩塌和梯度消失的缺点;通过添加一个独立的分类器来改进分类模型的兼容性,并在分类器中引入学习率衰减算法增加模型稳定性。试验结果表明,该方法可以有效地提高故障诊断的精度,并且验证了所提模型具有良好的泛化性能。 展开更多
关键词 发电机 特征提取 生成对抗网络(gan) 卷积神经网络(CNN) 故障诊断
下载PDF
无线传感网络中一种基于RF-GAN模型的入侵检测算法
3
作者 黄俊萍 《长沙大学学报》 2024年第2期23-28,共6页
针对现有无线传感网络入侵检测算法存在的效率低、精度差等问题,提出基于RFGAN模型的无线传感网络入侵检测算法。首先,采集无线传感网络运行数据,通过去噪、缺失补偿等步骤,完成对原始数据的预处理;然后,利用RF-GAN模型提取无线传感网... 针对现有无线传感网络入侵检测算法存在的效率低、精度差等问题,提出基于RFGAN模型的无线传感网络入侵检测算法。首先,采集无线传感网络运行数据,通过去噪、缺失补偿等步骤,完成对原始数据的预处理;然后,利用RF-GAN模型提取无线传感网络运行特征;最后,通过提取特征与检测标准的匹配,得出网络入侵检测结果。理论分析及实验结果表明:优化设计方法的入侵类型误检率明显更低,入侵数据量检测误差为0.015GB,相较于现有检测算法具有一定优势。 展开更多
关键词 RF-gan模型 无线传感网络 网络入侵检测 特征提取
下载PDF
基于Transformer和GAN的对抗样本生成算法 被引量:1
4
作者 刘帅威 李智 +1 位作者 王国美 张丽 《计算机工程》 CAS CSCD 北大核心 2024年第2期180-187,共8页
对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强... 对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络。实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求。 展开更多
关键词 深度神经网络 对抗样本 对抗攻击 Transformer模型 生成对抗网络 注意力机制
下载PDF
Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm 被引量:3
5
作者 D.Vidyabharathi V.Mohanraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2559-2573,共15页
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti... For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset. 展开更多
关键词 Deep learning deep neural network(DNN) learning rates(LR) recurrent neural network(RNN) cyclical learning rate(CLR) hyperbolic tangent decay(HTD) toggle between hyperbolic tangent decay and triangular mode with restarts(T-HTR) teaching learning based optimization(TLBO)
下载PDF
Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network 被引量:2
6
作者 程知群 胡莎 +1 位作者 刘军 Zhang Qi-Jun 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期342-346,共5页
In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are... In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AIGaN/CaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of A1GaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. 展开更多
关键词 Algan/gan high electron mobility transistor MODELING artificial neural network
下载PDF
基于改进MMD-GAN的可再生能源随机场景生成
7
作者 吴艳梅 陈红坤 +3 位作者 陈磊 褚昱麟 高鹏 吴海涛 《电力系统保护与控制》 EI CSCD 北大核心 2024年第19期85-96,共12页
针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,... 针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,提出了MMD-GAN的改进方案,即在MMD-GAN的基础上改进鉴别器损失函数,并采用谱归一化和有界高斯核提升生成器和鉴别器的训练稳定性。然后,设计了基于改进MMD-GAN的可再生能源随机场景生成流程。最后,分析了所提方法在可再生能源随机场景生成中的效果,比较了改进MMD-GAN方法与MMD-GAN方法及典型GAN方法的性能差异。结果表明,改进MMD-GAN方法在生成分布和真实分布的Wasserstein距离上较对比方法降低超过50%,生成的场景精度得到有效提升。 展开更多
关键词 场景生成 最大均值差异 生成对抗网络 可再生能源 数据驱动
下载PDF
Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network
8
作者 Derwin Suhartono Alif Tri Handoyo Franz Adeta Junior 《Computers, Materials & Continua》 SCIE EI 2023年第12期3637-3657,共21页
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imba... Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network(GAN)based augmentation on diverse datasets,including iSarcasm,SemEval-18,and Ghosh.This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network(RGAN).The proposed RGAN method works by inverting labels between original and synthetic data during the training process.This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution.Notably,the proposed RGAN model exhibits performance on par with standard GAN,showcasing its robust efficacy in augmenting text data.The exploration of various datasets highlights the nuanced impact of augmentation on model performance,with cautionary insights into maintaining a delicate balance between synthetic and original data.The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation,with a meticulous comparison against Natural Language Processing Augmentation(NLPAug)as an alternative augmentation technique.Overall,the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug.The increase in F1-score in experiments using RGAN ranged from 0.066%to 1.054%,and the use of standard GAN resulted in a 2.88%increase in F1-score.The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN,emphasizing its efficacy in text data augmentation. 展开更多
关键词 Data augmentation Generative Adversarial network(gan) Reverse gan(Rgan) sarcasm detection
下载PDF
ECGAN:Translate Real World to Cartoon Style Using Enhanced Cartoon Generative Adversarial Network
9
作者 Yixin Tang 《Computers, Materials & Continua》 SCIE EI 2023年第7期1195-1212,共18页
Visual illustration transformation from real-world to cartoon images is one of the famous and challenging tasks in computer vision.Image-to-image translation from real-world to cartoon domains poses issues such as a l... Visual illustration transformation from real-world to cartoon images is one of the famous and challenging tasks in computer vision.Image-to-image translation from real-world to cartoon domains poses issues such as a lack of paired training samples,lack of good image translation,low feature extraction from the previous domain images,and lack of high-quality image translation from the traditional generator algorithms.To solve the above-mentioned issues,paired independent model,high-quality dataset,Bayesian-based feature extractor,and an improved generator must be proposed.In this study,we propose a high-quality dataset to reduce the effect of paired training samples on the model’s performance.We use a Bayesian Very Deep Convolutional Network(VGG)-based feature extractor to improve the performance of the standard feature extractor because Bayesian inference regu-larizes weights well.The generator from the Cartoon Generative Adversarial Network(GAN)is modified by introducing a depthwise convolution layer and channel attention mechanism to improve the performance of the original generator.We have used the Fréchet inception distance(FID)score and user preference score to evaluate the performance of the model.The FID scores obtained for the generated cartoon and real-world images are 107 and 76 for the TCC style,and 137 and 57 for the Hayao style,respectively.User preference score is also calculated to evaluate the quality of generated images and our proposed model acquired a high preference score compared to other models.We achieved stunning results in producing high-quality cartoon images,demonstrating the proposed model’s effectiveness in transferring style between authentic images and cartoon images. 展开更多
关键词 gan CARTOON style transfer deep learning Bayesian neural network
下载PDF
Genetics Based Compact Fuzzy System for Visual Sensor Network
10
作者 Usama Abdur Rahman C.Jayakumar +1 位作者 Deepak Dahiya C.R.Rene Robin 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期409-426,共18页
As a component of Wireless Sensor Network(WSN),Visual-WSN(VWSN)utilizes cameras to obtain relevant data including visual recordings and static images.Data from the camera is sent to energy efficient sink to extract ke... As a component of Wireless Sensor Network(WSN),Visual-WSN(VWSN)utilizes cameras to obtain relevant data including visual recordings and static images.Data from the camera is sent to energy efficient sink to extract key-information out of it.VWSN applications range from health care monitoring to military surveillance.In a network with VWSN,there are multiple challenges to move high volume data from a source location to a target and the key challenges include energy,memory and I/O resources.In this case,Mobile Sinks(MS)can be employed for data collection which not only collects information from particular chosen nodes called Cluster Head(CH),it also collects data from nearby nodes as well.The innovation of our work is to intelligently decide on a particular node as CH whose selection criteria would directly have an impact on QoS parameters of the system.However,making an appropriate choice during CH selection is a daunting task as the dynamic and mobile nature of MSs has to be taken into account.We propose Genetic Machine Learning based Fuzzy system for clustering which has the potential to simulate human cognitive behavior to observe,learn and understand things from manual perspective.Proposed architecture is designed based on Mamdani’s fuzzy model.Following parameters are derived based on the model residual energy,node centrality,distance between the sink and current position,node centrality,node density,node history,and mobility of sink as input variables for decision making in CH selection.The inputs received have a direct impact on the Fuzzy logic rules mechanism which in turn affects the accuracy of VWSN.The proposed work creates a mechanism to learn the fuzzy rules using Genetic Algorithm(GA)and to optimize the fuzzy rules base in order to eliminate irrelevant and repetitive rules.Genetic algorithmbased machine learning optimizes the interpretability aspect of fuzzy system.Simulation results are obtained using MATLAB.The result shows that the classification accuracy increase along with minimizing fuzzy rules count and thus it can be inferred that the suggested methodology has a better protracted lifetime in contrast with Low Energy Adaptive Clustering Hierarchy(LEACH)and LEACHExpected Residual Energy(LEACH-ERE). 展开更多
关键词 Visual sensor network fuzzy system genetic based machine learning mobile sink efficient energy life of network
下载PDF
Using GAN Neural Networks for Super-Resolution Reconstruction of Temperature Fields
11
作者 Tao Li Zhiwei Jiang +2 位作者 Rui Han Jinyue Xia Yongjun Ren 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期941-956,共16页
A Generative Adversarial Neural(GAN)network is designed based on deep learning for the Super-Resolution(SR)reconstruction task of temperaturefields(comparable to downscaling in the meteorologicalfield),which is limite... A Generative Adversarial Neural(GAN)network is designed based on deep learning for the Super-Resolution(SR)reconstruction task of temperaturefields(comparable to downscaling in the meteorologicalfield),which is limited by the small number of ground stations and the sparse distribution of observations,resulting in a lack offineness of data.To improve the network’s generalization performance,the residual structure,and batch normalization are used.Applying the nearest interpolation method to avoid over-smoothing of the climate element values instead of the conventional Bicubic interpolation in the computer visionfield.Sub-pixel convolution is used instead of transposed convolution or interpolation methods for up-sampling to speed up network inference.The experimental dataset is the European Centre for Medium-Range Weather Forecasts Reanalysis v5(ERA5)with a bidirectional resolution of 0:1°×0:1°.On the other hand,the task aims to scale up the size by a factor of 8,which is rare compared to conventional methods.The comparison methods include traditional interpolation methods and a more widely used GAN-based network such as the SRGAN.Thefinal experimental results show that the proposed scheme advances the performance of Root Mean Square Error(RMSE)by 37.25%,the Peak Signal-to-noise Ratio(PNSR)by 14.4%,and the Structural Similarity(SSIM)by 10.3%compared to the Bicubic Interpolation.For the traditional SRGAN network,a relatively obvious performance improvement is observed by experimental demonstration.Meanwhile,the GAN network can converge stably and reach the approximate Nash equilibrium for various initialization parameters to empirically illustrate the effectiveness of the method in the temperature fields. 展开更多
关键词 SUPER-RESOLUTION deep learning ERA5 dataset gan networks
下载PDF
Honey Badger Algorithm Based Clustering with Routing Protocol for Wireless Sensor Networks
12
作者 K.Arutchelvan R.Sathiya Priya C.Bhuvaneswari 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3199-3212,共14页
Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abili... Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime. 展开更多
关键词 Cluster based routing wireless sensor networks objective function LIFETIME metaheuristics
下载PDF
Lateral interaction by Laplacian‐based graph smoothing for deep neural networks
13
作者 Jianhui Chen Zuoren Wang Cheng‐Lin Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1590-1607,共18页
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit... Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models. 展开更多
关键词 artificial neural networks biologically plausible Laplacian‐based graph smoothing lateral interaction machine learning
下载PDF
A Sketch-Based Generation Model for Diverse Ceramic Tile Images Using Generative Adversarial Network
14
作者 Jianfeng Lu Xinyi Liu +2 位作者 Mengtao Shi Chen Cui Mahmoud Emam 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2865-2882,共18页
Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this... Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44. 展开更多
关键词 Ceramic tile pattern design cross-domain learning deep learning gan generative adversarial networks ResNet Block
下载PDF
基于Transformer-GAN的农产品包装版式布局智能设计方法
15
作者 王家宁 朱磊 +3 位作者 张媛 张澜 韩芮 杜艳平 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期195-202,共8页
本研究提出一种基于Transformer-GAN的农产品包装版式布局智能设计方法,旨在解决现阶段的农产品包装主要依赖通版包装、缺乏产品特色等问题。首先,设计了内容感知模块,学习包装设计的内容特征;其次,提出一种设计序列模块,对包装布局信... 本研究提出一种基于Transformer-GAN的农产品包装版式布局智能设计方法,旨在解决现阶段的农产品包装主要依赖通版包装、缺乏产品特色等问题。首先,设计了内容感知模块,学习包装设计的内容特征;其次,提出一种设计序列模块,对包装布局信息进行序列化处理;最后,融合内容感知和布局信息,使模型学习图像的内容特征和布局特征,输出包装版式布局设计图。与先前的模型相比,本研究模型具有更好的设计性能和可解释性,同时创新性地将布局智能设计方法应用于包装设计领域。实验结果表明,设计序列模块提升了设计的有效性,序列化的布局特征相较于非序列化的特征更能生成优质的布局。该模型具有较强的可解释性,在农产品包装版式设计上具有良好的生成性能。 展开更多
关键词 农产品包装 智能设计:设计序列 TRANSFORMER 生成对抗网络
下载PDF
基于有效注意力和GAN结合的脑卒中EEG增强算法
16
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
下载PDF
融合门控变换机制和GAN的低光照图像增强方法
17
作者 何银银 胡静 +1 位作者 陈志泊 张荣国 《计算机工程》 CAS CSCD 北大核心 2024年第2期247-255,共9页
针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络... 针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络,该网络由多个基于门控通道变换单元的多尺度卷积残差模块构成,以提取输入图像的全局上下文特征和多尺度局部特征信息;然后,在特征融合网络中,采用卷积残差结构将提取的深浅层特征进行充分融合,再引入横向跳跃连接结构,最大程度保留细节特征信息,获得最终的增强图像;最后,引入联合损失函数指导网络训练过程,抑制图像噪声,使增强图像色彩更自然匀称。实验结果表明,该方法在主观视觉分析和客观指标评价方面相较其他算法均具有显著优势,其能有效提高低光照图像的亮度和对比度,减弱图像噪声,增强后的图像更清晰且色彩更真实,峰值信噪比、结构相似度和无参考图像质量评价指标平均可达16.48 dB、0.93和3.37。 展开更多
关键词 低光照图像增强 卷积残差结构 门控通道变换单元 无监督学习 生成对抗网络
下载PDF
Geographic Drone-based Route Optimization Approach for Emergency Area Ad-Hoc Network
18
作者 V.Krishnakumar R.Asokan 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期985-1000,共16页
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local... Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks. 展开更多
关键词 Mobile ad hoc networks(MANETs) geographical graph-based mapping(GGM) geographic drone based route optimization data speed anchor node’s
下载PDF
硅基InGaN/GaN多量子阱微盘器件的发光、探测和数据传输
19
作者 秦飞飞 卢雪瑶 +6 位作者 王潇璇 吴佳启 曹越 张蕾 樊学峰 朱刚毅 王永进 《发光学报》 EI CAS CSCD 北大核心 2024年第6期978-985,共8页
光源和探测器的集成可有效促进轻量化和小型化光电系统的发展,InGaN/GaN多量子阱器件中发光与探测共存现象为收发一体芯片的设计提供了可能。本文采用标准半导体工艺制备了硅片上集成的圆盘形InGaN/GaN多量子阱阵列器件,并对其发光、探... 光源和探测器的集成可有效促进轻量化和小型化光电系统的发展,InGaN/GaN多量子阱器件中发光与探测共存现象为收发一体芯片的设计提供了可能。本文采用标准半导体工艺制备了硅片上集成的圆盘形InGaN/GaN多量子阱阵列器件,并对其发光、探测以及基本通信特性进行了研究。微盘型器件中的共振模式有助于提升其探测特性,同时各向同性的辐射特性有助于器件作为光源时与探测器在空间上的耦合。作为光源,该器件的开启电压为2.5 V,中心波长455 nm,-3 dB带宽为5.4 MHz。作为探测器,该器件对紫外到蓝光波段的光有响应,探测性能随波长增加而减弱,截止波长450 nm。在365 nm光源激发下,该器件具有最高开关比7.2×10^(4),下降沿时间为0.41 ms。同时,基于单个微盘器件,本文构建并演示了半双工通信系统,在不同频段实现数据传输。这项研究对于电驱动光源制备以及收发一体的光通信具有重要意义。 展开更多
关键词 硅基Ingan/gan 多量子阱器件 发光与探测 半双工通信
下载PDF
面向舰船目标检测的SAR图像数据PCGAN生成方法
20
作者 潘磊 郭宇诗 +3 位作者 李恒超 王伟业 李泽琛 马天宇 《西南交通大学学报》 EI CSCD 北大核心 2024年第3期547-555,共9页
针对现有合成孔径雷达(SAR)图像数据生成方法大多无法同时生成舰船图像及其检测标签的问题,面向SAR舰船图像生成及目标检测任务,构建基于位置信息的条件生成对抗网络(PCGAN).首先,提出将舰船位置信息作为约束条件用于限制生成图像中舰... 针对现有合成孔径雷达(SAR)图像数据生成方法大多无法同时生成舰船图像及其检测标签的问题,面向SAR舰船图像生成及目标检测任务,构建基于位置信息的条件生成对抗网络(PCGAN).首先,提出将舰船位置信息作为约束条件用于限制生成图像中舰船的位置,并将其作为舰船图像的检测标签;随后,引入Wasserstein距离稳定PCGAN的训练过程;最后,利用生成的SAR舰船图像及对应检测标签完成YOLOv3网络的端到端训练,实现舰船数据增强与目标检测的协同学习,进而获得更耦合目标检测实际应用的多样性数据.在HRSID(high resolution SAR image dataset)数据集上的实验结果表明,PCGAN方法能生成清晰、鲁棒的SAR舰船数据,舰船检测准确度最高提升1.01%,验证了所提出方法的有效性. 展开更多
关键词 合成孔径雷达 生成对抗网络 数据增强 舰船检测 位置信息
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部